

TLP: White

Report: 202101040830

TCP/IP Stack Vulnerabilities Possibly Affect Healthcare Devices

Executive Summary

On December 8, 2020, a report titled Amnesia:33 developed by Forescout disclosed multiple zero-day vulnerabilities in the TCP/IP stacks impacting numerous Operational Technology (OT), Internet of Things (IoT), Building Automation Systems, and Information Technology (IT) devices. The 33 vulnerabilities could cause denial of service, unauthorized information disclosure and several remote code execution errors. According to Forescout, at least 150 vendors may have implemented libraries affected by Amnesia:33. Of the 33 reported vulnerabilities, 3 were classified as critical and require immediate attention.

Report

Following the Amnesia 33 report by Forescout which identified 33 vulnerabilities CISA released a separate ICS Advisory (<u>ICSA-20-343-01</u>) which provided additional details and mitigation activities.

The specific TCP/IP stacks affected include:

- uIP (end-of-life [EOL]) versions 1.0 and prior
- uIP-Contiki-OS [EOL] versions 3.0 and prior
- uIP-Contiki-NG versions 4.6.0 and prior
- *open-iscsi versions 2.1.12 and prior
- picoTCP-NG versions 1.7.0 and prior
- picoTCP (EOL) versions 1.7.0 and prior
- FNET versions 4.7.0 and prior
- Nut/Net versions 5.1 and prior
- *Treck versions 6.0.1.67 and prior

***open-iscsi** (small computer system interface) services insert a variant of the affected uIP stack and are affected by a small portion of the CVEs mentioned in CVE table below. The **Treck** TCP/IP stack may be known by other names such as Kasago TCP/IP, ELMIC, Net+ OS, Quadnet, GHNET v2, Kwiknet, or AMX.

The disclosed TCP/IP stacks serves as essential communication protocols for millions of OT, IoT, Building Automation Systems, and IT devices. The affected stacks have the potential to cause the following vulnerabilities:

Vulnerability	Example Exploit
Infinite Loop	function used to process IPv6 extension headers and extension header options can be forced into an infinite loop state due to unchecked header/option lengths.
Integer Wraparound	function used to decapsulate RPL extension headers does not check for unsafe integer conversion when parsing the values provided in a header, allowing an attacker to corrupt memory.
Integer Overflow	function that parses the TCP MSS option does not check the validity of the length field of this option, allowing an attacker to force it into an infinite loop when arbitrary TCP MSS values are supplied.

[TLP: WHITE, ID#202101040830, Page 1 of 4] HC3@HHS.GOV <u>www.HHS.GOV/HC3</u>

TLP: White

Report: 202101040830

Vulnerability	Example Exploit
Out-of bounds Read	function that parses incoming transport layer packets (TCP/UDP) does not check the length fields of packet headers against the data available in the packets. Given arbitrary lengths, an out-of-bounds memory read may be performed during the checksum computation.
Out-of- bounds Write	When handling TCP urgent data, there are no sanity checks for the value of the urgent data pointer, allowing an attacker to corrupt memory by supplying arbitrary urgent data pointer offsets within TCP packets.
Improper Null Termination	When parsing incoming DNS packets, there are no checks whether domain names are null terminated. This allows an attacker to achieve memory corruption with crafted DNS responses.
Improper Input Validation-	the payload length field of IPv6 extension headers are not checked against the data available in incoming packets, allowing an attacker to corrupt memory.
Heap-Based Buffer Overflow	A vulnerability in Treck HTTP Server components allow an attacker to cause a denial-of- service condition. This vulnerability may also result in arbitrary code execution.

Analyst Comment:

The rise of the use of IOT devices in the healthcare environment makes these vulnerabilities particularly important for the healthcare and public (HPH) Sector. Once an attacker uses these vulnerabilities to get into the entities environment they can then cause an unknown number of issues. IOT devices are also often difficult to update and therefore remain unpatched, making them a well known and easy entry point for threat actors. A non-segmented network the attacker was able to access several devices disrupting their normal functions. Additionally, maintaining updates for TCP/IP stacks can assist with eliminating the possibility of a remote code execution, denial of service, and unauthorized information disclosure.

Patches, Mitigations & Workarounds:

Mitigations

If an organization has adopted this software from an external entity, it's recommended that the organization contact the provider to get appropriate updates for integrated stacks within software. Once validated by the organization, update to the latest patches for specified TCP/IP stacks.

Additional recommendations:

- Ensure default passwords are changed and secured.
- Disable unused features and services on your embedded devices.
- Avoid exposure of IoT and embedded devices directly over the Internet and use a segmented network zone when available.
- Enable security features such as deep-packet inspection and firewall anomaly detection when available to protect embedded and IoT devices.
- When remote access is required, use secure methods, such as Virtual Private Networks (VPNs), recognizing that VPNs may have vulnerabilities and should be updated to the most current version available.

TLP: White

Report: 202101040830

Patches

Further details, including any available patches, will be included in the corresponding CVE entries below:

Amnesia:33

Annesia.55				
CVE	Affected Stack	Vulnerability Type	Impact	CVSSv3
<u>CVE-2020-13984</u>	ulP	Infinite Loop	Denial of Service	7.5
CVE-2020-13985	ulP	Integer Wraparound	Denial of Service	7.5
CVE-2020-13986	ulP	Integer Loop	Denial of Service	7.5
CVE-2020-13987	ulP	Out-of-Bounds Read	Denial of Service,	8.2
	open-iscsi		Information Leak	
CVE-2020-13988	ulP	Integer Overflow	Denial of Service	7.5
	open-iscsi			
CVE-2020-17437	ulP	Out-of-Bounds Write	Denial of Service	8.2
	open-iscsi			
CVE-2020-17438	ulP	Out-of-Bounds Write	Denial of Service	7
	open-iscsi			
CVE-2020-17439	ulP	Improper Input Validation	DNS Cache Poisoning	8.1
CVE-2020-17440	ulP	Improper Input Validation	Denial of Service	7.5
CVE-2020-24334	ulP	Out-of-Bounds Read	Denial of Service	8.2
CVE-2020-24335	ulP	Out-of-Bounds Read	Denial of Service	7.5
CVE-2020-24336	ulP	Out-of-Bounds Read	Remote Code Execution	9.8
CVE-2020-25112	ulP	Out-of-Bounds Write	Remote Code Execution	8.1
CVE-2020-17441	picoTCP	Improper Input Valiation	Denial of Service,	7.5
			Information Leak	
CVE-2020-17442	picoTCP	Integer Overflow	Denial of Service	7.5
CVE-2020-17443	picoTCP	Integer Overflow	Denial of Service	8.2
CVE-2020-17444	picoTCP	Out-of-Bounds Read	Denial of Service	7.5
CVE-2020-17445	picoTCP	Out-of-Bounds Read	Denial of Service	7.5
CVE-2020-24337	picoTCP	Infinite Loop	Denial of Service	7.5
CVE-2020-24338	picoTCP	Out-of-Bounds Write	Remote Code Execution	9.8
CVE-2020-24339	picoTCP	Out-of-Bounds Read	Denial of Service	7.5
CVE-2020-24340	picoTCP	Out-of-Bounds Read	Denial of Service,	8.2
	1		Information Leak	
CVE-2020-24341	picoTCP	Out-of-Bounds Read	Denial of Service,	8.2
			Information Leak	
CVE-2020-17467	FNET	Out-of-Bounds Read	Information Leak	8.2
CVE-2020-17468	FNET	Out-of-Bounds Read	Denial of Service	7.5
CVE-2020-17469	FNET	Out-of-Bounds Read	Denial of Service	5.9
CVE-2020-17470	FNET	Improper Input Validation	DNS Cache Poisoning	4
CVE-2020-24383	FNET	Improper Null Termination	Denial of Service,	6.5
			Information Leak	
CVE-2020-25107	Nut/Net	Out-of-Bounds Read	Denial of Service	7.5
CVE-2020-25108	Nut/Net	Out-of-Bounds Write	Denial of Service	7.5
CVE-2020-25109	Nut/Net	Out-of-Bounds Read	Denial of Service	8.2
CVE-2020-25110	Nut/Net	Out-of-Bounds Read	Denial of Service	8.2
CVE-2020-25111	Nut/Net	Out-of-Bounds Write	Remote Code Execution	9.8
<u></u>				0.0

[TLP: WHITE, ID#202101040830, Page 3 of 4] HC3@HHS.GOV www.HHS.GOV/HC3

TLP: White

Report: 202101040830

ICSA-20-353-01 (Treck)

CVE	Affected Stack	Vulnerability Type	Impact	CVSSv3
<u>CVE-2020-25066</u>	Treck	Heap-Based Buffer Overflow	Denial of Service	9.3
<u>CVE-2020-27336</u>	Treck	Out-of-Bounds Read	Remote Code Execution	3.7
<u>CVE-2020-27337</u>	Treck	Out-Of-Bounds Write	Remote Code Execution, Denial of Service	9.1
CVE-2020-27338	Treck	Out-of-Bounds Read	Remote Code Execution, Denial of Service	5.9

References

Amnesia:33 Identify and Mitigate the Risk From Vulnerabilities Lurking in Millions of IoT, OT and IT Devices <u>https://www.forescout.com/company/resources/amnesia33-identify-and-mitigate-the-risk-from-vulnerabilities-lurking-in-millions-of-iot-ot-and-it-devices/</u>

AMNESIA:33: Researchers Disclose 33 Vulnerabilities Across Four Open Source TCP/IP Libraries <u>https://www.tenable.com/blog/amnesia33-researchers-disclose-33-vulnerabilities-tcpip-libraries-uip-fnet-picotcp-nutnet</u>

ICS Advisory (ICSA-20-343-01) https://us-cert.cisa.gov/ics/advisories/icsa-20-343-01

Embedded TCP/IP stacks have memory corruption vulnerabilities https://www.kb.cert.org/vuls/id/815128

Third-party libraries are one of the most insecure parts of an application <u>https://techbeacon.com/security/third-party-libraries-are-one-most-insecure-parts-application</u>

SUSE statement on Amnesia:33 vulnerabilities <u>https://www.suse.com/c/suse-statement-on-amnesia33-vulnerabilities/</u>

PicoTCP User Documentation

https://os.mbed.com/media/uploads/daniele/user_doc.pdf

Embedded TCP/IP stacks have memory corruption vulnerabilities https://www.kb.cert.org/vuls/id/815128

ICS Advisory (ICSA-20-353-01) https://us-cert.cisa.gov/ics/advisories/icsa-20-353-01

CISA Issues ICS Advisory for New Vulnerabilities in Treck TCP/IP Stack <u>https://www.securityweek.com/cisa-issues-ics-advisory-new-vulnerabilities-treck-tcpip-stack</u>