NIAID Response to the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)

Alan Embry, PhD
Chief, Respiratory Diseases Branch
Division of Microbiology & Infectious Diseases
NIAID, NIH, DHHS
SARS-CoV-2/COVID-19 Medical Countermeasures Task Force

SARS-CoV-2/COVID-19 MCM Task Force

- Therapeutics
- Vaccines
- Diagnostics
- Clinical Trials
NIAID Accelerating SARS-CoV-2 Research

- Improve understanding of SARS-CoV-2/COVID-19
- Evaluate potential cross-reactivity with existing SARS/MERS vaccine candidates (and antibodies)
- Develop SARS-CoV-2 vaccine candidates
- Provide resources to facilitate vaccine development
Current Funding Opportunities

- Notice of Special Interest Regarding the Availability of Urgent Competitive Revisions for Research on the 2019 Novel Coronavirus (2019-nCoV)*
 - Improve understanding of 2019-nCoV
 - Development of medical countermeasures
 - Development of animal models

- 2020 NIAID Omnibus Broad Agency Announcement solicits development of 2019-nCoV* vaccines, therapeutics and diagnostics

*SARS-CoV-2
Sharing Samples and Reagents

- Viral isolate from first U.S. patient available through BEI Resources (others soon)

- Patient samples as available (via USG sample sharing WG)

- Reagents including molecular clones, plasmids, pseudoviruses, recombinant protein in progress
Partnership between the VRC/NIAID and Moderna

GMP product expected in March 2020

2 proline (2P) mutations at apex of central helix result in S protein locked in prefusion conformation.

Prefusion-stabilized CoV S-2P is more immunogenic than wild-type S.
Ongoing Efforts Towards a Universal CoV Vaccine

- Optimize antigen design for potency and breadth
- Nanoparticles to display multiple CoV spike antigens and optimize immunogenicity
- Gene-based delivery for rapid response

Slide Adapted from Barney Graham
Vaccine Development For Emerging Coronaviruses

- Coronaviruses have pandemic potential and novel coronaviruses will likely continue to emerge

- NIAID rapidly advancing development of SARS-CoV-2 vaccine candidates

- Global collaboration and transparency are critical
2019-nHCoV

Baric Laboratory
University of North Carolina
Outline

• Introduction

• Emerging Coronaviruses
 – SARS-CoV
 – Pre-pandemic SARS-like Bat-CoV
 – Drivers of Epidemic Disease Outbreaks

• The Outbreak
 – Origins
 – 2019-HCoV
 • Genome Organization and relatedness
 – Disease

• Countermeasures
 – Vaccines

• Summary
Timeline: Emerging Nidoviruses

<table>
<thead>
<tr>
<th>Virus</th>
<th>Species</th>
<th>Emergence</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCoV-NL63</td>
<td>Human</td>
<td>500-800 years</td>
</tr>
<tr>
<td>HCoV-229E</td>
<td>Human</td>
<td>200-300 years</td>
</tr>
<tr>
<td>HCoV-OC43</td>
<td>Human</td>
<td>~120 years</td>
</tr>
<tr>
<td>PEDV</td>
<td>Porcine</td>
<td>~25 years</td>
</tr>
<tr>
<td>PRRSV</td>
<td>Porcine</td>
<td>~25 years</td>
</tr>
<tr>
<td>BCoV</td>
<td>Bovine</td>
<td>~20 years</td>
</tr>
<tr>
<td>SARS-CoV</td>
<td>Human</td>
<td>~16 years</td>
</tr>
<tr>
<td>MERS-CoV</td>
<td>Human</td>
<td>~7 years</td>
</tr>
<tr>
<td>SADS-CoV (HKU2)</td>
<td>Porcine</td>
<td>~2 years</td>
</tr>
<tr>
<td>2019-nHCoV</td>
<td>Human</td>
<td>2 months</td>
</tr>
</tbody>
</table>

2012 in US

Accelerating Cross Species Movement

Drivers of CoV Evolution

- **CoV Genome Size:** 32Kb

- **CoV Mutation Rate**
 - 10^{-6}
 - Regulated Fidelity (nsp14: ExoN)

- **Environmental Change**
 - Fidelity rates change

- **High Rates RNA Recombination**
 - 25% during mixed infections
 - Modular evolution

- **Plastic Surface Glycoprotein**
 - Tolerates high rates of mutation
 - Deletions and Insertions (tropism, antigenicity)
 - Recombination (modular evolution)

Origins of the Group 2B SARS and SARS-like CoV

- **SARS-CoV Origins (Yellow)**
 - bats
 - Open Markets and Civet Intermediate Hosts

- **SARS-like bat CoV (Pink)**
 - Pre-epidemic potential (high/low)
 - Bats, low level seroprevalence in people residing near bat hibernacula

- **2019-nHCoV**
 - Bats
 - Open Market Origins

Before Dec 2019
SARS-CoV Emergence in 2002 in China

8,096 cases, 774 deaths, in 32 countries, Nov 1 2002 - July 31 2003

Most Likely Model

Epidemic SARS-CoV

WIV-16 (98% Identical)

Bat to Human to Civet

Intermediate host

Is SARS-CoV Extinct?

BtCoV

Animals

Threat Level?
SARS MA15 Molecular Clone

Replicate like SARS-CoV on primary human airway epithelial cells
Use human receptor as well as SARS-CoV (if yes)
Synthesize full length genomes, recover full length virus

Rockx et al., JV 2007; Becker et al., PNAS 2008; Menachery et al., Nature Medicine, 2015; Menachery et al., PNAS 2017
Most Emerging Viruses

Zoonotic Reservoirs

SARS-like bat CoV
SARS-CoV
MERS-CoV

Heterogeneous Pools of related viruses (0-35+%) PrePandemic Strains

SARS-CoV 2003-04 0%

8,000 cases 774 deaths

10%

22%

2019-nCoV

High Risk Emergence Strains

2019-

Future Outbreak?

>60,000 cases 1360 deaths in 28 countries; Human transmission: Germany, US, Thailand, Japan, Vietnam, China

Sheahan et al., JV 2008; Becker PNAS 2008; Menachery V et al., Nature Medicine 2015, Menachery PNAS 2016; Simon et al., mBIO 2017
Known Group 2B SARS-like CoV Poised for Human Emergence

High Risk Features
- Use hACE2/entry
- Grow in Primary Human Airway Cells
- Cause ARDS
- Are-related Disease Severity (elderly ↑)
- Escape Existing Immune Therapeutics

Platform to develop/test broad based vaccines, hmAB and antiviral drugs
Known Group 2C MERS-like CoV Poised for Human Emergence

MERS-related Strains

MERS-like bat CoV (China) 65% Identity with MERS-CoV Spike
-Uses hDPP4 as a receptor for docking and entry
-Replicates efficiently in primary human airway epithelial cells
Zoonotic Virus Emergence Models

Classic Model: Mutation Driven

- Zoonotic Virus Pools
 - Host range mutation
- Random
- Rare

3-4 Step Model Requiring Mutations

- Secondary host (reservoir)
- Human infection
- Adaptation

- Epidemic strain

- Direct human infection
- Secondary host (reservoir)
- Adaptation

Limited Mutation is Necessary

- PreProgrammed Viruses
 - Generalists: receptor orthologs
- Recombination events
- Random

- May not require mutation-driven adaptation

- Direct human infection
- Secondary host (reservoir)

- Epidemic strain
2019-nHCoV

• Emerged Early Dec in Wuhan China (Dec 1)

• Began as Cluster of Cases Associated with Open Markets (Dec 31)
 – No Evidence of Human to Human Transmission
 – Not Very Pathogenic
 – Not SARS-CoV, Likely a Novel Virus

Lesson
Don’t under-estimate epidemic potential of an emerging virus

• Wuhan Open Fish Market Closed (Jan 1, 2020)

• Identified as a Coronavirus on Jan 7th, 2020
 – distant relative to the SARS-CoV (kissing cousin)

• Genome Length Sequence Reported (5 isolates) (~9-11th)

• 15 HCW infected, China Confirms Person to Person Spread (~20th)
UPDATE ON NEWLY DISCOVERED CORONAVIRUS

<table>
<thead>
<tr>
<th></th>
<th>SARS CoV</th>
<th>MERS CoV</th>
<th>2019 nCo-V (SARI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virion Structure</td>
<td>Enveloped RNA virus</td>
<td>Enveloped RNA virus</td>
<td>Enveloped RNA virus</td>
</tr>
<tr>
<td>Outbreak period</td>
<td>2003-2004</td>
<td>2012-present</td>
<td>2019-present</td>
</tr>
<tr>
<td>Initial site of isolation</td>
<td>Guangdong province, China</td>
<td>Saudi Arabia</td>
<td>Wuhan, China</td>
</tr>
<tr>
<td>No. of countries/cases</td>
<td>29</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>No. of cases (mortality)</td>
<td>8,096 (9.6%)</td>
<td>2,494 (~34%)</td>
<td>~60,000 (N=1367)(2%)* >8,243 critical (~16%)</td>
</tr>
<tr>
<td>No. of cases U.S.</td>
<td>8</td>
<td>2 (2014)</td>
<td>13 (WA, IL, CA, AZ, Mass, Wis)</td>
</tr>
<tr>
<td>Reservoir (intermediate host)</td>
<td>Bats (palm civet)</td>
<td>Bats (dromedary camels)</td>
<td>Bats (likely a zoonosis)</td>
</tr>
<tr>
<td>Incubation period</td>
<td>2-7 days (range, 2-21)</td>
<td>2-7 (range, 2-14 days)</td>
<td>2-14 days (mean 5-6)</td>
</tr>
<tr>
<td>Infectivity, rho</td>
<td>1.8-2.5</td>
<td>0.3-1.3</td>
<td>1.4-2.2 (WHO), 2.5-3.8*</td>
</tr>
<tr>
<td>Super spreaders</td>
<td>Yes</td>
<td>Yes (uncommon)</td>
<td>Yes (1 case infected 14 HCW)</td>
</tr>
<tr>
<td>Asymptomatic/mild Spread</td>
<td>No</td>
<td>Rare</td>
<td>Perhaps Yes?/Yes</td>
</tr>
<tr>
<td>Attack Rate</td>
<td>10.3% to 60%</td>
<td>4 to 20%</td>
<td>?, 80+% (one study)</td>
</tr>
<tr>
<td>Transmission (including to HCP)</td>
<td>Droplet/Direct, Airborne/Indirect?</td>
<td>Droplet/Direct, Airborne/Indirect?</td>
<td>Droplet/Direct, Airborne/Indirect?</td>
</tr>
<tr>
<td>Treatment (PEP)</td>
<td>Supportive (none)</td>
<td>Supportive (none)</td>
<td>Supportive (none)*</td>
</tr>
<tr>
<td>Infection Prevention^</td>
<td>Airborne, contact, face shield</td>
<td>Airborne, contact, face shield</td>
<td>Airborne, contact, face shield</td>
</tr>
</tbody>
</table>

Wuhan is 4.1 percent and 2.8 percent in Hubei, compared to 0.17 percent elsewhere
Phylogentic Relationships Between the Group 2B Coronaviruses

21st Century Emerging Human Coronaviruses
SARS-CoV 2003
MERS-CoV 2012
2019-nHCoV
21st Century
Emerging Human
Coronaviruses
SARS-CoV 2003
MERS-CoV 2012
2019-nCoV

Phylogenetic Relationships Between the Group 2B Coronaviruses

High Risk
SARS-like Bt CoV
3-10%
SARS/SHC041 Chimera

SARS-CoV
2003-04
(1-2%)
Spike

Low Risk
SARS-like Bt CoV
15-25%

New Clade of SARS-like Viruses

Differ by
>5,000 nts

RaTG13 was sequenced from a bat in a cave from Yunnan Province in China
(1200 nts)

96% nt
Identity

25% different

25% different

2019 nCoV

2019-nCoV/USA/IL1/2020 MN988713
2019-nCoV/USA/CA1/2020 MN994467
2019-nCoV/WW32 MN988527
2019-nCoV/WW36 V05 MN995529
2019-nCoV/WW4 MN988528
2019-nCoV/WHU01 MN988668
2019-nCoV/WHU02 MN988669
2019-nCoV/USA/CA2/2020 MN994468
2019-nCoV/Florida/12020 MT007544
2019-nCoV/WW06 MN988530
2019-nCoV/WW07 MN996531
2019-nCoV/Whuan Hu-1 MN989947
2019-nCoV/USA/AZ1/2020 MN997409
2019-nCoV/HKU-SZ-004 MN989364
2019-nCoV/USA/WU7/200 MN989325
2019-nCoV/HKU-SZ-005a MN975262

Rooted with
HCoV OC43
2019-nHCoV Genome Organization

Uses hACE2 Receptor for Entry

Zhou et al., bioRxiv 2020.01.22.914952
Immune Therapeutic Countermeasures

2003-2004 SARS-CoV Outbreak Strains

- Urbani (Late)
- CUHK-W1 (Middle)
- GZ02 (Early)
- GD03 2004

Group 2B SARS-like Bat Coronaviruses

- WIV16
- WIV1
- SHC014
- 2019 nHCoV
- HKU3

All Are Poised for Human Emergence

Antigenic Distance is Large, SARS-CoV Immune Therapeutics (hmAB) and Vaccines likely Fail

Broadly active drugs/vaccines are essential to control zoonotic CoV
Vaccine Targets

• Spike is a major target for neutralizing antibodies, a principle target for vaccine design for emerging and animal coronaviruses
 – SARS-CoV, SHC014, WIV1 and SARS-CoV 2.0

• Produce broadly cross reactive vaccines that target group 2b SARS-like CoV
 – Broadly cross neutralizing epitopes ill defined

• Stem is more conserved than head domain of spike glycoprotein—target for broad nAB

• Potent Neutralizing Antibodies
 – Globular Head
SARS Vaccine Complications

• Vaccine efficacy in aged populations can reduce performance

• Heterogeneous group 2b SARS-like CoV pool may vary by as much as 35% (compared with SARS)

• Th2 Immune Pathology after Vaccination

• Evidence for Enhancing Antibodies
 – Primates (ACS Infect Dis. 2016 May 13;2(5):361-76)
Acknowledgements

Baric Laboratory
 Adam Cockrell
 Emily Gallichotte
 Rachel Graham
 Lisa Gralinski
 Lisa Lindesmith
 Ande West
 Ethan Fritch
 Alexandra Schaefer
 Trevor Scobey
 Tommy Baric

Amy Sims
Sarah Leist
Jesica Swanstrom
Paul Brewer-Jensen
Boyd Yount
Ellen Young
Caitlin Edwards
Jenny Munt
Kenny Dinnon

Tim Sheahan Lab (UNC)
 Michael Mallory
 Kendra Gully
 Ariana Brown

Mark Denison Lab

Rich Whitley, UAB

National Institute of Allergy and Infectious Diseases
Developing Antivirals Against Coronaviruses

Denison Lab – Vanderbilt University Medical Center
Baric Lab – UNC Chapel Hill
Gilead Sciences
Emory University - DRIVE
The Coronavirus Antiviral Research Team

- **Vanderbilt University Medical Center:** Andrea Pruijssers, Jim Chappell, Maria Agostini, Laura Stevens, Xiaotao Lu, Tia Hughes, Amelia George, Mark Denison
- **University of North Carolina:** Tim Sheahan, Amy Sims, Rachel Graham, Boyd Yount, Ralph Baric
- **Gilead:** Joy Feng, Danielle Porter, Richard Mackman, Mike Clarke, Tomas Cihlar
- **Emory / EIDD / DRIVE:** Greg Bleumling, Mike Natchus, George Painter
- **NIH / NIAD – U19 (Whitley UAB) – CETR – AD3C**
Need for Antivirals against CoVs:

- Broad diversity of CoVs in bats with demonstrated capability to infect human cells animal models – “outbreak ready”
- Failure of antibodies to neutralize “future” zoonotic CoVs and loss of cross protection by vaccines
- Time to develop vaccines differs from trajectory of epidemic
- Universal vaccines across all CoV PPP groups will be difficult and potentially with gaps or not possible
- Potential for “off the shelf” use toward highly conserved functions
Goals for CoV antiviral development

• Broadly active against diverse coronaviruses
• High barrier to resistance - limited genetic paths, high fitness cost
• Extended therapeutic window for prevention, amelioration, treatment,
• Additional
 • decrease transmission,
 • oral administration
Coronavirus Replication

Essential functions and viral components:

- Entry - Spike
- Translation
- Proteolysis - nsp3 and nsp5
- Replication and Transcription - (nsp7-nsp14)
- Assembly and Release - structural proteins

Coronavirus amino acid and function is highly conserved in the core replicase proteins.
Coronaviruses assemble a multiprotein replicase complex

PLpro 3CLpro

Helicase ATPase

Endonuclease

2’O-Methyltransferase

3’-5’ Exoribonuclease

N7-Methyltransferase

2’O-Methytransferase

nsp7 - 8 Processivity

nsp-9 RNA-binding

nsp-10 14/16 cofactor

Polymerase

RdRP

3’-5’ Exoribonuclease

nsp8

nsp7

nsp12-RdRp

nsp14-ExoN

nsp10

nsp13

nsp9 RNA “clamp”
Coronaviruses assemble a multiprotein replicase complex

- Only RNA virus order (nidovirales) to encode proofreading ExoN
- Removes mis-incorporated nucleotides
- Confers high fidelity replication (up to 20-fold)
Coronaviruses encode a proofreading exoribonuclease (nsp14-ExoN)

- Only RNA virus to encode a proofreading exonuclease
- Removes mis-incorporated nucleotides
- Confers high fidelity replication (up to 20-fold)
Native resistance of coronaviruses to nucleoside analogues is due to ExoN-proofreading

MOI = 0.01 PFU/cell
24 h p.i.

Adapted from Smith et al. PLOS Path. 2013.
Remdesivir and β-D-\(N^4\)-Hydroxycytidine (EIDD-1931/2801, NHC) inhibit CoV replication

EC_50 = 0.03 μM

EC_50 = 0.17 μM

MOI = 0.01 PFU/cell
24 h p.i.

Agostini et al mBio 2017

Agostini et al J Virol 2019
Remdesivir inhibits other human CoVs and potential zoonotic CoVs

α-CoV

<table>
<thead>
<tr>
<th>HCoV-NL63</th>
</tr>
</thead>
<tbody>
<tr>
<td>[remdesivir] µM</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>10^7</td>
</tr>
</tbody>
</table>

β-2c MERS-like

<table>
<thead>
<tr>
<th>Bat-CoV HKU5</th>
</tr>
</thead>
<tbody>
<tr>
<td>[remdesivir] µM</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>10^7</td>
</tr>
</tbody>
</table>

β-2b SARS-like

<table>
<thead>
<tr>
<th>Bat-CoV HKU3</th>
</tr>
</thead>
<tbody>
<tr>
<td>[remdesivir] µM</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>10^7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bat-CoV SCH014</th>
</tr>
</thead>
<tbody>
<tr>
<td>[remdesivir] µM</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>10^7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bat-CoV WIV1</th>
</tr>
</thead>
<tbody>
<tr>
<td>[remdesivir] µM</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>10^7</td>
</tr>
</tbody>
</table>

MOI = 0.5 PFU/cell

48 h p.i.

Two mutations (F476L and V553L) selected in the nsp12-RdRp after 23 passages in the presence of Remdesivir.

6 fold resistance
In SARS-CoV
Remdesivir resistance mutations are less fit than WT in vitro and attenuated in vivo.
Remdesivir given before or 1 day post exposure mitigates disease in a mouse model of Lethal SARS-CoV infection
Remdesivir - IV

• Potently inhibits multiple divergent CoVs
• Mechanism includes RNA chain termination
• Resistance has high barrier – difficult to achieve
• Resistance mutations associated with fitness loss in vitro and attenuation in vivo.
• Efficacious for prophylaxis in mouse model of lethal SARS-CoV
• Decreases disease and virus titer when administered early in infection
Remdesivir - IV

- Potently inhibits multiple divergent CoVs
- Mechanism includes RNA chain termination
- Resistance has high barrier – difficult to achieve
- Resistance mutations associated with fitness loss in vitro and attenuation in vivo.
- Efficacious for prophylaxis in mouse model of lethal SARS-CoV
- Decreases disease and virus titer when administered early in infection

EIDD-2801- NHC oral

- Mutagenesis
Coronavirus Countermeasures

Direct acting antivirals (DAA’s) - for treatment, prophylaxis, and decreasing transmission

Monoclonal antibodies - to block infection and act as “passive immunization” during an epidemic

Host Directed therapy - inhibitors or immunomodulators – modify disease – extend therapeutic window for DAA’s and mAbs

Combinations

• DAA’s + DAA’s: increase potency and efficacy, prevent resistance
• DAAs + mAbs: block infection and stop virus replication
• DAA’s + Host Directed Rx: target disease and extend therapeutic window