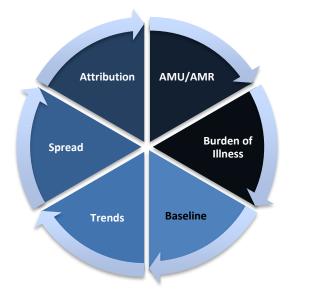


NARMS and the Evolution of One Health Surveillance

Patrick McDermott, MS, Ph.D., D(AAM) Director, The National Antimicrobial Resistance Monitoring System Food & Drug Administration Center for Veterinary Medicine Office of Research Laurel, MD


> PACCARB meeting Dec 1, 2021

NARMS and the Evolution of One Health Surveillance

Integrated surveillance of antimicrobial resistance: Zoonotic foodborne bacteria

The coordinated sampling and testing of bacteria from food animals, foods, and clinically ill humans; and the subsequent evaluation of antimicrobial resistance trends throughout the food production and supply chain using harmonized methods.

One Health surveillance of antimicrobial resistance: Human, animal, plant environment

An integrated, unifying approach that recognizes that the health of humans, animals, plants, and our ecosystems are closely linked and inter-dependent.

Food and Agriculture Organisation of the United Nations.

WHO Advisory Group on Integrated Surveillance of AMR (AGISAR) **WWW.fda.gov**

GOAL 1: ENHANCE SAMPLING FOR FOODBORNE PATHOGENS WITHIN A ONE HEALTH FRAMEWORK

THE NATIONAL ANTIMICROBIAL RESISTANCE MONITORING SYSTEM

STRATEGIC PLAN 2021-2025

- Objective 1.1: Add select pathogens causing illness in animals
 - Objective 1.2: Establish baseline AMR data in aquatic <u>ecosystems</u>
- *Objective 1.3*: Test <u>animal feed</u> and pet food
- Objective 1.4: Add seafood and explore <u>other possible</u> <u>sources</u> of AMR (minor food-producing animal species, produce, and wildlife)
- Objective 1.5: Explore AMR in <u>other foodborne</u> <u>microorganisms</u>

The Three Arms of NARMS - 2019

	Humans	Retail Meats	Food-Producing Animals
	Centers for Disease Control and	U.S. Food and Drug	United States Department of
Agency	Prevention (CDC)	Administration (FDA)	Agriculture (USDA)
	Health departments in 50 states	Health departments in 15 states	Food Safety and Inspection Service (FSIS)
		Universities in 7 states	Agricultural Research Service (ARS)
Source	III persons	Grocery Stores	Ceca and Product
		Chicken	Chickens
		Ground Turkey	Turkeys
		Ground Beef	Cattle
		Pork	Swine
	Salmonella	Salmonella	Salmonella
Bacteria	Campylobacter	Campylobacter	Campylobacter
	E. coli 0157	Escherichia coli	Escherichia coli
	Vibrio	Enterococcus	Enterococcus
	Shigella		

The Three+ Arms of NARMS - 2021

	Humans	Retail Meats	Food-Producing Animals	Animal Pathogens	Environment	WGS Data Repository
Agency	CDC	FDA	USDA - FSIS, ARS	Vet-LIRN, NAHLN	EPA, FDA, USDA, CDC	NIH - NCBI
Source	III persons	Grocery Stores	Ceca and Product	III Animals	Pilot Studies	Genomes
		Chicken	Chickens	Dogs	Method dev. (2021- 2)	AMRFinderPlus
		Ground Turkey	Turkeys	Cats	Watersheds (2022)	
		Ground Beef	Cattle	Cattle		
		Pork	Swine	Pigs	Natl. survey (2023-4)	
		Shrimp	Veal	Poultry		
		Tilapia	Lamb			
		Salmon	Goat			
			Catfish			
Camp Bacteria	Salmonella	Salmonella	Salmonella	Salmonella	Salmonella	
	Campylobacter	Campylobacter	Campylobacter			
	E. coli 0157	Escherichia coli	Escherichia coli	E. coli	E. coli	
	Vibrio	Enterococcus	Enterococcus	Enterococcus		
	Shigella	Aeromonas		Other	Metagenome	
		Vibrio				

GOAL 2: EMPLOY ADVANCED TECHNOLOGIES TO BETTER UNDERSTAND THE EVOLUTION AND SPREAD OF RESISTANCE AMONG FOODBORNE PATHOGENS

	NATIO	
	MICRO	
RESI	STANC	CE
MON	ITORI	NG
SYST	TEM	
STRA	ATEGI	C PLAN
2021-	2025	

- *Objective 2.1*: Apply predictive resistance analytics, <u>machine learning</u>, and other bioinformatics tools to NARMS-related data to better understand the mechanisms, sources, and spread of resistance.
- *Objective 2.2*: Optimize *in vitro* antimicrobial susceptibility testing to identify new resistance mechanisms.
- *Objective 2.3:* Develop <u>metagenomic approaches</u> to characterize the resistome of animals, humans and environmental samples and to link resistance genes to their microbial source.
- *Objective 2.4:* Employ <u>long-read DNA sequencing</u> methods to establish a reference database of fully characterized strains and their plasmids.
- Objective 2.5: Conduct research to understand <u>concomitant adaptive</u> <u>microbial features</u> that might contribute to the persistence and spread of resistance (*e.g.*, colonization, stress tolerance) under different selection pressures (*e.g.*, heavy metals, antiseptics, *etc.*).

NARMS Genomes with Susceptibility Data*

Bacterium	Human	FP Animals	Retail Meats	VD Labs	Total
Salmonella	9,449	8,916	8,982	1,624	28,971
Сатру	2,164	11,059	3,871		17,094
E. coli	566	4,314	4,569	1,690	11,139
Enterococcus		1,575	102		1,677
S. pseudintermedius				1,463	1,463
TOTAL	12,179	25,864	17,524	4,777	60,344

*As of November 24, 2021

NARMS Genotype-Phenotype Correlations

Check for updates

Applied and Environmental AMERICAN SOCIETY FOR SOCIETY FOR MICROBIOLOGY

J Antimicrob Chemother 2015; 70: 2763-2769

Resistance Phenotypes in Campylobacter spp.

doi:10.1093/jac/dkv186 Advance Access publication 3 July 2015

Whole-Genome Sequencing for Detecting Antimicrobial Resistance in Nontyphoidal Salmonella

Patrick F. McDermott,^a Gregory H. Tyson,^a Claudine Kabera,^a Yuansha Chen,^a Cong Li,^a Jason P. Folster,^b Sherry L. Ayers,^a Claudia Lam,^a Heather P. Tate,^a Shaohua Zhao^a

Pathogens and Disease, 76, 2018, fty018 doi: 10.1093/femspd/ftv018 Advance Access Publication Date: 12 March 2018 Research Article

RESEARCH ARTICLE

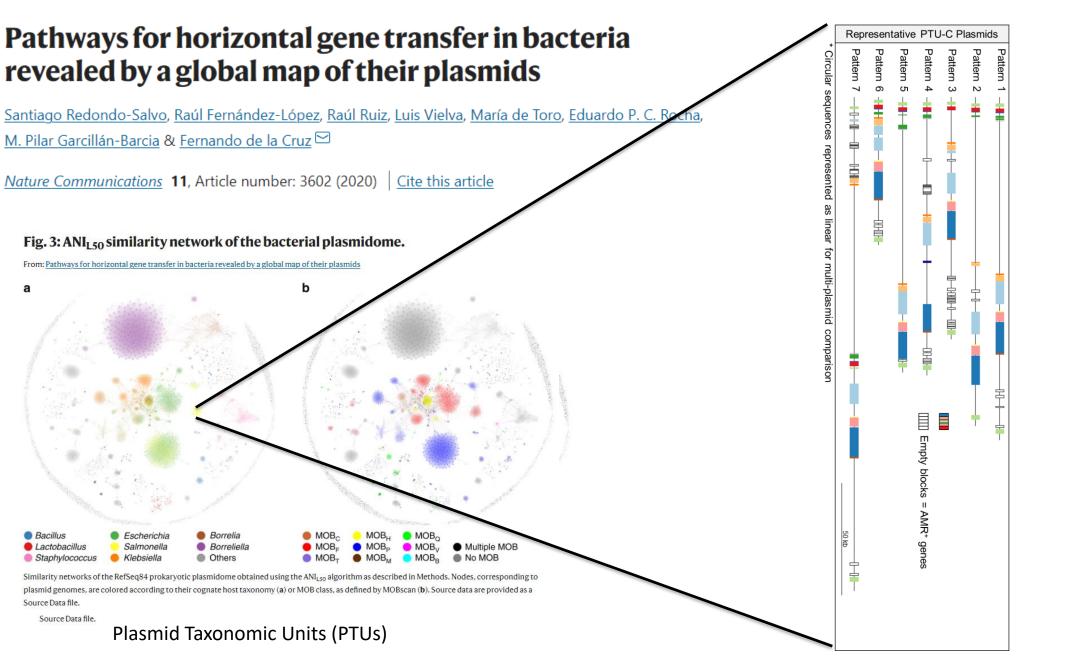
Whole-genome sequencing based characterization

of antimicrobial resistance in Enterococcus

Gregory H. Tyson*, Jonathan L. Sabo, Crystal Rice-Trujillo, Jacqueline Hernandez and Patrick F. McDermott

Michael Feldgarden,^a Vyacheslav Brover,^a Daniel H. Haft,^a Arjun B. Prasad,^a Douglas J. Slotta,^a Igor Tolstoy,^a Gregory H. Tyson,^b Shaohua Zhao,^b Chih-Hao Hsu,^b Patrick F. McDermott,^b Daniel A. Tadesse,^b Cesar Morales,^c Mustafa Simmons,^c Glenn Tillman,^c Jamie Wasilenko,^c Jason P. Folster,^d William Klimke^a

www.fda.gov

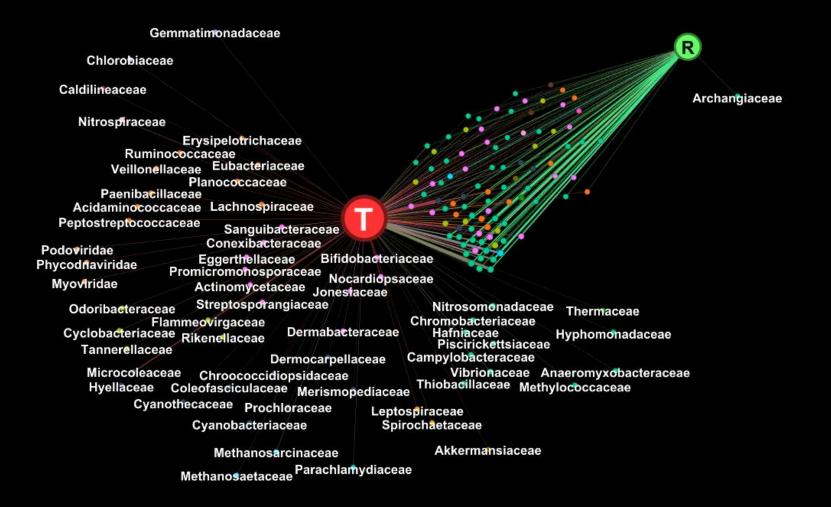

FD)

WGS accurately predicts antimicrobial resistance in Escherichia coli

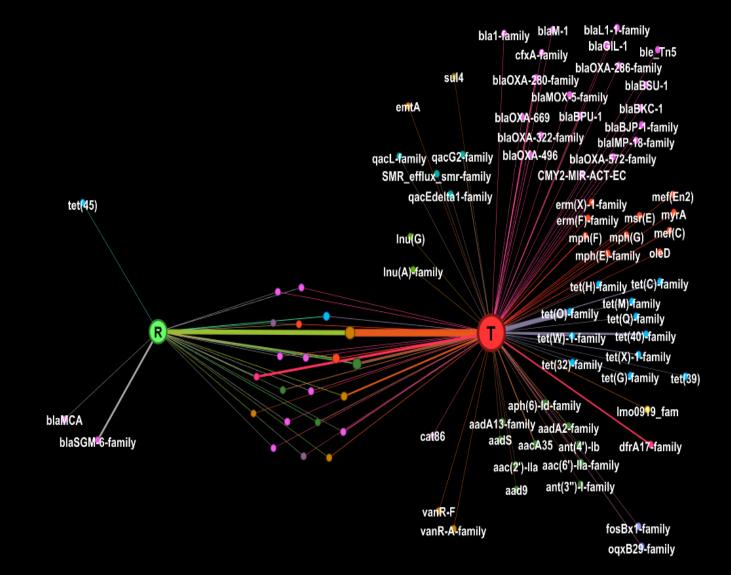
Whole-Genome Sequencing Analysis Accurately Predicts Antimicrobial

S. Zhao,^a G. H. Tyson,^a Y. Chen,^a C. Li,^a S. Mukherjee,^a S. Young,^a C. Lam,^a J. P. Folster,^b J. M. Whichard,^b P. F. McDermott^a

Gregory H. Tyson¹, Patrick F. McDermott¹, Cong Li¹, Yuansha Chen¹, Daniel A. Tadesse¹, Sampa Mukherjee¹, Sonya Bodeis-Jones¹, Claudine Kabera¹, Stuart A. Gaines¹, Guy H. Loneragan², Tom S. Edrington³, Mary Torrence⁴, Dayna M. Harhay⁵ and Shaohua Zhao^{1*}



www.fda.gov


FDA

Taxonomic Differences between Less (R) and More (T) Impacted Surface Water

The Water Resistome: Comparison of Less (R) and More Impacted (T) Surface Waters

www.fda.gov

FDA

Outlook

- The NARMS strategic direction is towards defining best practices in One Health national antimicrobial resistance monitoring
- Environmental testing has begun with pilot projects to explore surface waters as points of confluence of AMR runoff from built human and agricultural environments.
- The scope of NARMS surveillance is being evaluated with pilot surveys of other food animals raised with antibiotics.
- We are fully exploiting DNA sequencing technologies to get detailed information on resistance and associated biological features and sharing data as soon as possible.
- We are planning a public meeting in September 2022

www.fda.gov

COMBATING ANTIMICROBIAL RESISTANCE AND PROTECTING THE MIRACLE OF MODERN MEDICINE

CONSENSUS STUDY REPORT

The National Academics of SCIENCES - ENGINEERING - MEDICINE

