PACCARB Case Scenario Discussion Infection prevention/control and biosecurity – agricultural workforce

Jeff Bender DVM, MS DACVPM School of Public Health University of Minnesota

Case Study - Avian Influenza

H5N2 Outbreak in Minnesota

- First detection on March 4, 2015
- 110 premises affected (6 considered dangerous contacts)
 - Most were commercial turkey growers
- \$647.2 million estimated lost turkey and egg production
- \$171.7 million of lost wages, salaries, and benefits
- 2,500 jobs were affected

After Action Review - 2016

- Positives
 - Ability to work together under stressful circumstances
 - Find solutions and improve systems
 - Existing positive working relationships prior to the outbreak

iven to Discoversm

Gaps and Discrepancies Identified After Action Review – 2016

- Secure and timely sharing of information
- Mobilizing resources
 - Between federal agencies and County emergence operations
 - ICS training
- Shared goals and consistent processes
 - Federal premise ID
 - Wildlife surveillance
 - Worker and responder safety

Courtesy of Dr. Montse Torremorell

MAJOR ARTICLE

Live Animal Markets in Minnesota: A Potential Source for Emergence of Novel Influenza A Viruses and Interspecies Transmission

Mary J. Choi,^{1,a} Montserrat Torremorell,^{2,a} Jeff B. Bender,² Kirk Smith,³ David Boxrud,³ Jon R. Ertl,² My Yang,² Kamol Suwannakarn,² Duachi Her,³ Jennifer Nguyen,³ Timothy M. Uyeki,¹ Min Levine,¹ Stephen Lindstrom,¹ Jacqueline M. Katz,¹ Michael Jhung,¹ Sara Vetter,³ Karen K. Wong,¹ Srinand Sreevatsan,² and Ruth Lynfield³

¹Centers for Disease Control and Prevention, Atlanta, Georgia; ²University of Minnesota College of Veterinary Medicine, Minnesota Center of Excellence for Influenza Research and Surveillance, and ³Minnesota Department of Health, St Paul

LIVE ANIMAL MARKET CASE STUDY

IAVs identified by rRT-PCR and virus isolation, Live Animal Market

	rRT-PCR	virus isolation	Subtype
	positive/#tested	positive/#tested	(n = No. virus isolates)
Swine lungs	70/150 (47%)	72/84 (86%)	H1N1 (n=3), H1N2 (n=22), H3N2
			(n=39), co-infections (n=7)
Oral fluids	47/49 (96%)	13/46 (28%)	H1N2 (n=3), H3N2 (n=9), co-
			infections (n=1)
Air, swine	30/57 (53%)	30/45 (66.6%)	H1N2 (n=7), H3N2 (n=22), co-
pens			infections (n=1)
Railings,	16/34 (47%)	5/21 (23.8%)	H3N2 (n=5)
swine pens			
Door, animal	1/25 (4%)	1/4 (25%)	H3N2 (n=1)
holding area			
Sink/faucet	1/24 (4%)	2/4 (50%)	H3N2 (n=2)
Total	164/364 (45%)	123/204 (60%)	H1N1 (n=3), H1N2 (n= 32), H3N2
			(n=81), co-infections (n=9)

UNIVERSITY OF MINNESOTA

Driven to Discoversm

What Does this Mean for the Public/Workers?

- IAVs were common among swine and were readily isolated from environmental samples
- Multiple IAV strains and subtypes were co-circulating
- Interspecies transmission of IAV

One Health Response to HPAI Outbreak:

What occupational Issues would you expect?

- How to protect the people exposed to the infected turkeys and chickens?
- What information do they need?
- What are their risks?
 - Exposure to euthanasia elements (i.e. foaming agents), heat stress, appropriate PPE
- Are the messages getting to the right people?
 What are environmental issues/concerns? (i.e. mass disposal)

Likely Needs

- Quick development of guidance documents
- Useable guidance for the workforce
- Emotional and psychological support for the stress of response and depopulation

Hierarchy of Control Methods

UNIVERSITY OF MINNESOTA Driven to Discover