Recognizing, characterizing, and responding to the IAV pandemic

Daniel Linhares, DVM, MBA, PhD Associate Professor, and Director of Graduate Education Roy A Schultz Professor in Swine Population Medicine Iowa State University College of Veterinary Medicine <u>linhares@iastate.edu</u>

www.fieldepi.org

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

Influenza A virus monitoring:

www.field*epi*.org/*SDRS*

Tracking incidence of bacterial disease

IOWA STATE UNIVERSITY Veterinary Diagnostic Laboratory

Diagnostic codes system

Farm-level monitoring & control:

Pathogen response:

frontiers in Veterinary Science

PERSPECTIVE published: 05 November 2021 doi: 10.3389/fvets.2021.769312

Next Generation of Voluntary PRRS Virus Regional Control Programs

Edison S. Magalhães^{1*}, Jeffrey J. Zimmerman¹, Derald J. Holtkamp¹, Dyneah M. Classen², Douglas D. Groth², Lauren Glowzenski³, Reid Philips⁴, Gustavo S. Silva¹ and Daniel C. L. Linhares¹

¹ Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, ² Carthage Veterinary Service, Ltd., Carthage, IL, United States, ³ TriOak Foods Inc., Oakville, IA, United States, ⁴ Boehringer Ingelheim Animal Health USA Inc., Atlanta, GA, United States

A collaborative project across leading US swine-centric VDLs

Domestic disease monitoring program: collaboration between USA VDLs:

J. J.

VDL-specific projects: further describing pathogen detection in the USA swine industry

Supporting the U.S. swine industry during crisis events: tracking emerging PRRSV strains (RFLP 1-4-4 L1C variant)

← We can track the IAV epi curve, reporting it by:

- Age group
- Production phase
- State
- Time (day or week)

Visualization of IAV activity over space & time

Legend • 2-3 STD above baseline • 2-3 STD below baseline • 3+ STD above baseline • 3+ STD below baseline • Within +/- 2 STD of baseline

This is a PEDV (enteric coronavirus affecting pigs) example: USA, 2022

Monitoring of disease diagnosis (diagnostic codes at ISU) over time, age group, farm type, US state

Note: these communications and the information contained therein are for general informational and educational purposes only and are not to be construed as recommending or advocating a specific course of action.

www.field*epi*.org

Weekly monitotoring of diagnostic codes

www.field*epi*.org

Weekly monitoring of disease diagnosis: works for any disease!

Implementation of ongoing automated monitoring of clinically relevant indicators of disease activity (pig mortality, abortions, feed & water disappearance)

From early detection to control

Biocontainment (reducing shed & spread of IAV between farms):

- Herd immunization
 - Significantly reduce the duration and magnitude of viral shedding
 - Break the transmission cycle, controlling the infection in herds
- Flow of pigs and people based on test results
 - Bio-management practices (i.e., hygiene, shower in-out)
- In short, practicing veterinarians have the knowledge and expertise to <u>manage Influenza A virus infection</u> in herds without depopulation!

From early detection to control

Coordinated IAV control & elimination efforts @ regional level

- Implementation of <u>contingency plans</u> based on routine monitoring and pressure of infection in the region.
 - Early identification of infected sites
 - Vet-to-vet communication
 - Adjust people/pig flow (shared labor, shared supplies, transportation of pigs, feed, and other resources)

SDRS-related projects: macro-epidemiological aspects of IAV & associated bacterial infections over time, space, age groups, farm type.

Farm-level tools for rapid response:

- Ongoing automated monitoring of clinically relevant indicators of disease activity (pig mortality, abortions, feed & water disappearance)
- Control of Influenza A virus from infected farms
- Alert systems, communications, and action plans at the regional level

Steps to implement this plan

Tracking IAV activity: we are ready

- Technically ready to go
- Agreement between participating labs & state & federal officers
- Financial support to increase active surveillance

Tracking antimicrobial resistance patterns

Need to develop

Farm-level tools to identify and respond to IAV infection

- Technically ready to go
- Can be further improved with next-gen vaccines

Regional level disease control programs

- Technically ready to go
- Need to raise funds to support ongoing PCR-based monitoring (surveillance)

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

www.fieldepi.org

Also possible (work in progress): monitoring of AMR patterns over time, region, age group, production phase.

