

BARDA's CARB Progress Update

Joe Larsen, Ph.D. Director BARDA Division of CBRN Medical Countermeasures

Presidential Advisory Council on Combating Antibiotic-Resistant Bacteria

CBRN Threats

BARDA Supported Push and Pull Incentives

Updated August 9, 2017

Projections by SEPT 14

BARDA's Antibacterial Portfolio National Action Plan Metrics

BARDA Antibacterial Portfolio milestones from the 2015 National Action Plan for CARB	Status	Year Completed
ASPR/BARDA will create at least one additional portfolio partnership (Objective 4.6, Year 1)		2015
Two antibiotic drugs developed by portfolio partners for treatment of an urgent or serious pathogen (Table 1) will enter Phase III clinical investigation (Objective 4.6, Year 3)		2016 (2 yrs. ahead of schedule)
IND applications for at least two additional antibiotic drugs developed by portfolio partners will be submitted for FDA approval (Objective 4.6, Year 5)	On-Track	
U.S. agencies will also explore collaborations with the New Drugs 4 Bad Bugs (ND4BB) programs of the Innovative Medicines Initiative (Objective 5.5, Year 1)		2016

BARDA's Diagnostic Portfolio National Action Plan Metrics

BARDA's Diagnostic milestones from the 2015 National Action Plan for CARB	Status	Year Completed
BARDA) will fund at least three new diagnostic development projects that involve next-generation sequencing, multiplex molecular assays, or other new technologies that shorten the time needed for reliable and accurate detection of drug resistance (Objective 3.1, Year 3)		2017
NIH and ASPR/BARDA will establish a prize for development of a rapid diagnostic test that can improve treatment of drug-resistant infections and facilitate antibiotic stewardship (Objective 3.1, Year 3)		2016
At least one new diagnostic product, the development of which was facilitated by NIH or ASPR/ BARDA, will be submitted for FDA approval or clearance (Objective 3.1, Year 5)		2017
NIH and ASPR/BARDA will manage and administer a prize contest (see above) for development of a rapid diagnostic test that can improve treatment of drug-resistant infections and facilitate antibiotic stewardship (Objective 3.1, Year 5)	On-Track	2020

BARDA's Accelerator [CARB-X] National Action Plan

BARDA's CARB Biopharmaceutical Accelerator milestones from the 2015 National Action Plan for CARB	Status	Year Completed
ASPR/BARDA and NIH will work with a consortium of industry partners to develop a strategy for establishing the CARB Biopharmaceutical Accelerator (Objective 4.7, Year 1)		2015
The CARB Biopharmaceutical Accelerator will be operational, with technical services in place to facilitate toxicology studies, animal challenge studies, and other activities needed to accelerate drug development (Objective 4.7, Year 3)		2016 (2 yrs. ahead of schedule)
NIH and ASPR/BARDA will implement a strategy for assisting research partners who are developing novel classes of antibacterial drugs in fulfilling the requirements of FDA IND applications (Objective 4.5, Year 1)		2015
NIH and ASPR/BARDA will meet on a semi-annual basis with investigators who participate in the Antibiotic Resistance Biopharmaceutical Incubator to evaluate progress in providing technical resources for in vitro and in vivo screening of resistant pathogens of public health concern (Objective 4.5, Year 1)		2017
NIH and ASPR/BARDA will identify at least twelve candidate products for preclinical development support and support three candidate products from preclinical development through IND submission (Objective 4.5, Year 3)	On-Track	
BARDA and NIH will assess progress in meeting Accelerators five-year goals: (Objective 4.7, Year 5)		
Identifying at least five targets for novel therapeutics		2017
Generating in vivo data to validate at least three of these targets	On-Track	
Generating at least three antibacterial drug candidates	On-Track	
 Transitioning at least two of these candidates from preclinical testing to submission of an FDA IND application to begin clinical trials 	On-Track	

Combating Antibiotic Resistant Bacteria Biopharmaceutical Accelerator

CARB-X Overview

In 2016 NIAID and BARDA successfully launched the Combating Antibiotic-Resistant Bacteria Biopharmaceutical Accelerator (CARB-X) called out in the U.S. 2015 *National Action Plan for Combating Antibiotic-Resistant Bacteria*

CARB-X is a \$455M global antibacterial innovation initiative utilizing a unique public-private partnership model

 A financial commitment over 5 year up to \$250M for BARDA, \$155M for Wellcome Trust and \$50M in-kind from NIAID for pre-clinical services

CARB-X brings together BARDA, NIAID, Wellcome Trust as funders and three life science accelerators to identify, select, and manage a portfolio of early stage antibacterial candidates

CARB-X will deliver novel antibacterial products to clinical development over the next 5 years and is on-track to address all National Action Plan metrics

CARB-X Accomplishments

- Program operational 2 yrs. ahead of schedule
- A Global Innovation Fund leveraging a novel Public Private Partnership model with a 1 to 1 cost share
- CARB-X's Year #1 Accomplishments
 - \$41.6 million to support antibacterial pre-clinical development plus an additional \$52.6 if project milestones are met
 - Targeting the most urgent drug-resistant Gram-negative bacteria, as prioritized by the WHO and CDC
 - 18 innovative projects funded, all potential game-changers in fight against drug-resistant bacteria. More projects to come in late 2017
 - 8 new classes of antibiotics in the pipeline
 - · 368 applications received from researchers around the world
 - Providing fully non-dilutive funding, with wrap around business support services from world leading life-science accelerators
 - Global reach expanding with funded projects in 6 different countries and no geographic restrictions on funding

And currently seeking additional Funders

Powered by **CARB-X**

8 new classes of antibiotics

5 Non Traditional Approaches

10 New Targets

CARB-X Portfolio

The CARB-X portfolio comprises 18 early stage R&D projects investigating 8 new classes of antibiotics, 5 non-traditional antibiotics, 10 new molecular targets and a rapid diagnostic to determine the type of drug-resistant bacteria that is causing an infection.

Company/		Novelty*					Bacteria Targeted / Stage of Early Development		
Research Team	Project	New Class	Non- trad- itional	New Target	Project description	Urgency/ Priority**	Hit to Lead Pre- Lead Optimization Clinical Phase 1		
Achaogen	AKAO- LpxC	0		0	LpxC Inhibitor	0	Pseudomonas aeruginosa		
Antabio	PEI		0	0	Pseudomonas Elastase inhibitor	0	Pseudomonas aeruginosa		
Bugworks Research	Gyrox	0			Gyrase-topoisomerase inhibitor	0	Gram- negative activity		
Cidara Therapeutics	CD201		0	0	Bifunctional immunotherapy	0	Acinetobacter + <i>P. aeruginosa</i> + Enterobacteriaceae		
ContraFect	Gram- negative lysins		Ø	0	Recombinant lysin protein	0	P. aeruginosa		
Debiopharm	Debio 1453	0		0	Narrow-spectrum inhibitors of Fabl	0	Neisseria Gonorrhoeae		
Eligochem	Helical AMP	0			Helical Antimicrobial Peptide	0	Gram-negative activity		
Entasis Therapeutics	ETX000				Oral Gram-negative combination	0	Gram-negative activity		
Forge Therapeutics	FG-LpxC	0		0	LpxC Inhibitor	0	Gram-negative activity		
Iterum	Sulopenem				Oral and IV penem	0	Gram-negative activity		
Microbiotix	T3SS Inhibitor		0	0	Virulence modifier	0	Pseudomonas aeruginosa		
Oppilotech	LPS	0		0	Targets synthesis of LPS	0	Gram- negative activity		
Redx Pharma	NBTI	0			Dual-acting topoisomerase inhibitor	0	Acin. + P. aerug + Enterobacteriaceae		
Spero Therapeutics	SPR741			0	Potentiator	0	Gram-negative activity		
Tetraphase Pharm	TP-6076				Next-generation tetracycline	0	Acinetobacter + Enterobacteriaceae		
VenatoRx	VNRX-PBP	0			ß-lactamase Resistant PBP Inhibitor	0	Entero- bacteríaceae		
Visterra	VIS705		0	0	Antibody-drug conjugate		Pseudomonas aeruginosa		

Comment							
Company/ Research Team	Project		Feasability Demonstration	Optimization and Preparation for Development	Product Development	System Integration and Testing	
Proteus	Rapid POC Diagnostic	Optical bacterial imaging	POC Diagnostic				

* Novelty characterizations of new class and new target are established by CARB-X following the Pew Trusts pipeline analysis model. Pew defines a novel chemical class as a group of antibiotics that share a new common core molecular structure. Non-traditional products include lysins and monoclonal antibodies.

** Urgent and priority drug-resistant bacteria are determined by the Centers for Disease Control and Prevention (CDC) and the World Health Organization (WHO).

Stage of development is approximate as of July 2017

BARDA's Antibacterial (AB) Program Highlights

VABOMERE

- August 2017, Rempex Pharmaceuticals received FDA approval for Vabomere to treat complicated urinary tract infections
- This is the first BARDA-supported antibiotic to be FDA approved.

- Achaogen completed all human clinical studies and plans to submit to the FDA their application to market Plazomicin to treat complicated urinary tract infections and infections due to drugresistant bacteria.
- Achieved primary endpoints for cUTI
- Descriptive study in CRE infections showed lower rates of mortality or disease related complications compared with colistin therapy

New Drug Application submission projected for late 2017

- In July 2017, CUBRC/Tetraphase announced positive top-line results from a second registrational Phase 3 clinical trial evaluating the efficacy and safety of intravenous eravacycline for the treatment of patients with complicated intra-abdominal infections.
- New Drug Application submission is projected for 4QCY2017

New Programs in FY2017

- BARDA is anticipating initiating a program for the development of an orally-administered beta-lactam/beta-lactamase inhibitor combo *Goal: oral treatment of ESBL E. coli or Klebsiella pneumoniae infections*
- BARDA is anticipating initiating a program for the late stage clinical development of a *C. difficile* therapy.
 Goal: novel first in class treatment

BARDA's Phase I-III Clinical Investments

Barda's Antibacterial Timeline

Sponsor	Compound	Development Stage				
5001501	Compound	Preclinical Ph	nase I	Phase II	Phase III	
Achaogen	Plazomicin	Next-Generation Aminoglycoside cUTI/AP, CRE, Plague, Tularemia				
Rempex	Carbavance	BI/BLI Combination CRE, cUTI				
Cempra	Solithromycin	Next-Generation Fluoroketolide CABP, GC, Anthrax, Tularemia				
CUBRC/Tetraphase	Eravacycline	Fully Synthetic Tetracycline cIAI, cUTI, MDR				
Basilea	Ceftobiprole	Cephalosporin ABSSSI, SAB, CABP, Plague, Tularemia				
Astra Zeneca	Aztreonam-Avibactam	BL/BLI Combination cIAI, HAP/VAP, cUTI, BSI, MDR gram-, Melioidosis, G	Blanders, Plague			
GlaxoSmithKline	Gepotidacin	Topo II Inhibitor CABP, GC, uUTI, Plague, Tularemia, Anthrax				
GlaxoSmithKline	GSK-830	Cephem BL cUTI, cIAI, HABP/VAPB, MDR				
GlaxoSmithKline	GSK-680	Topo II Inhibitor TBD				
The Medicines Company	Carbavance	BL/BLI Combination HABP/VABP, MDR			>	
Hoffman-La Roche	RG6080	Broad Spectrum BL cUTI, cIAI, HABP/VABP, MDR	>			
CARB-X	Pre-Clinical Accelerator	Hit-to-Lead to Phase 1				
TOTIN				1		

Where will BARDA Invest Going Forward

Market Entry Rewards are Needed to Establish a Pull Incentive

- Antibiotics are one of the only class of drugs whose use diminishes utility overtime
- How do we ensure antibiotics are available while not driving inappropriate use?
- Market Entry Rewards models seek to uncouple profit of antibiotics from the number of units sold
 - Allow a reasonable return on investment (ROI)
 - Can build in provisions for stewardship and conservation

There is consensus in the community that a Pull Incentive is needed

Market Entry Rewards

BARDA has the track record and is strategically positioned to implement CARB Pull Incentives
Supported FDA approval of 32 products since 2006

- - Project BioShield (15 Products Stockpiled and 7 Approved)

Summary

- BARDA continues to deliver on the goals set forth in the CARB National Strategy/Action Plan
- BARDA supported program led to the FDA approval of Vabomere, a new antibiotic to treat Gram-negative infections
- CARB-X is promoting innovation in antibacterial product development
- New market models, such as market entry rewards could be utilized to reward innovation while achieving public health objectives

Thank you joseph.larsen@hhs.gov 202-260-0050

