Overview of Antibiotic Resistance in the Environment

PACCARB September 26, 2018

Jo Handelsman Wisconsin Institute for Discovery University of Wisconsin-Madison

Environmental Resistome

Studies in unmanaged environments with no anthropogenic antibiotic exposure

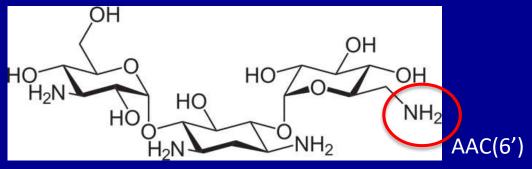
- <u>Spatial isolation</u>—are there antibiotic resistance genes from antibiotic production and use?
- <u>Temporal isolation</u>—were there antibiotic resistance genes in the pre-antibiotic era?
- <u>Similarity to clinical resistance genes</u>—are the environmental genes similar to those found in clinical settings?

Approaches to Discovery of Environmental Resistome

 Functional metagenomics—cloning and expression of DNA from environment; seek functionality independent of sequence

 Sequence-based metagenomics—massive sequencing; seek genes with sequence similarity to known resistance genes

Natural Environments Distant from Antibiotic Use

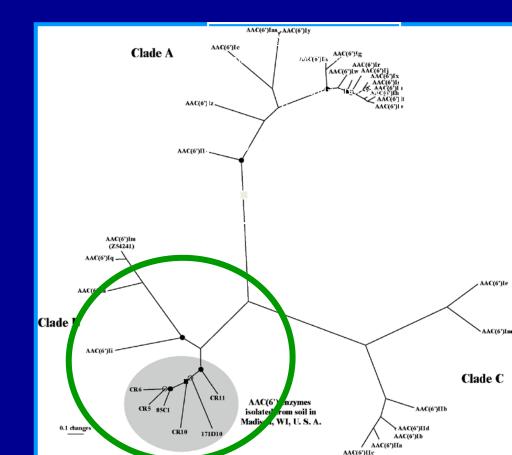

The Environmental Resistome

 Geographic distribution of new clades of resistance genes

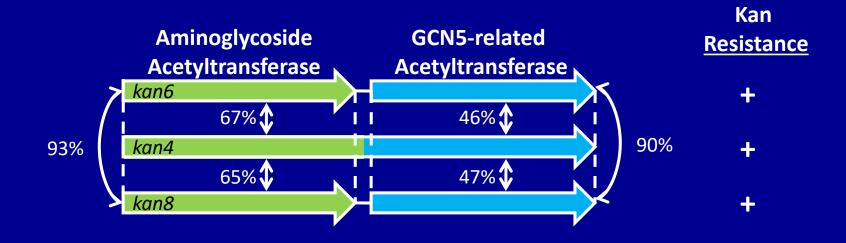
Bifunctional proteins

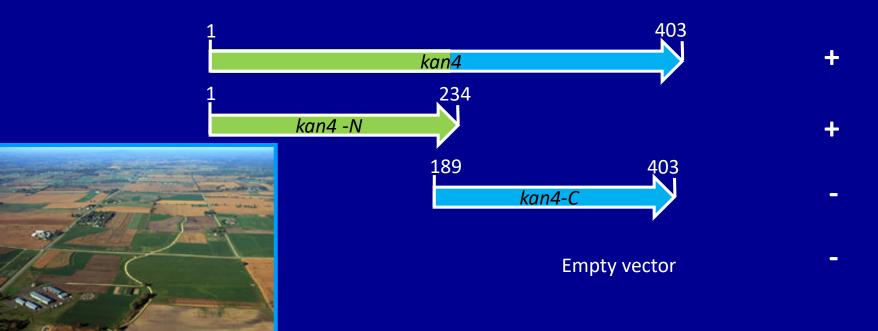
• Inferred inter-domain gene transfer

Phylogenetic Analysis of AAC(6') Genes



Resistance genes from West Madison soil form a new clade of acetyltransferases.


Found same gene cluster in Alaska soil.


Not in clinical samples.

Riesenfeld, et al. (2004) *Environ Micro.* **6**(9), 981–989

"Bifunctional" Kanamycin Resistance Proteins

Alaskan soil harbors a bifunctional β-lactamase

56% aa identity to class D 54% aa identity to class C

First reported bifunctional β-lactamase

The Environmental Resistome

 Geographic distribution of new clades of resistance genes

• Bifunctional proteins

Inferred inter-domain gene transfer

Key Findings in the Environmental Resistome Related genes over vast geographic space

• Kanamycin-resistance genes from soil are similar to each other (over wide geographic range), and diverge deeply from resistance genes found in clinical isolates

Bifunctional resistance proteins

- Found apparent fusion of aminoglycoside resistance genes
- First bifunctional *B*-lactamase

Possible inter-domain gene transfer

• Methyltransferase from microbial mat confers Km resistance on *E. coli*, but appears to be most recently from an Archaea

Key Findings in the Environmental Resistome

Selection for multi-drug resistant bacteria from soil and PCR amplification yielded resistance genes with high sequence identity to genes found in clinical settings

Forsberg et al., (2012) Science 337:1107

Functional metagenomic analysis of resistance genes from 30,000-year-old permafrost identified *B*-lactamases with 53 to 84% identity to previously known genes (similar results with *tetM* and *vanA* homologs)

D'Costa et al., (2011) Nature 477:457

Cave-dwelling *Paenibacillus* sp. isolated from surface for 4M years contains multi-drug resistance; 5 new resistance determinants without modern homologs *Pawlowski et al., (2016) Nature Comm. 7:13803.*

Key Conclusions

- The environment contains copious antibioticresistance determinants
- Many are identical or similar to genes known in clinical settings
- Many are different and contain new motifs (i.e., bifunctional proteins)
- Antibiotic resistance occurs in the environment in the absence of anthropogenic influences

Thanks to....

Pat Schloss Amy Klimowicz Gabriel Lozano Carlos Rios David Relman

Patricia McManus Lindsay Rusnak Christian Riesenfeld Heather Allen Justin Donato Luke Moe