COVID-19 Mortality from Secondary Acquired Infections

Cornelius J. Clancy, M.D.
Chief, Infectious Diseases
VA Pittsburgh Healthcare System
Associate Chief, Infectious Diseases
Director, XDR Pathogen Lab and Mycology Research Unit
University of Pittsburgh

How life has changed: COVID-19 and AMR
Presidential Advisory Council on Combating Antibiotic-Resistant Bacteria
9 September 2020
Why do COVID-19 patients die?

- Diffuse alveolar damage causing acute respiratory distress syndrome (ARDS)
- Thromboembolic disease
- Multisystem organ failure
- Immune depletion and dysregulation

Do patients die of secondary infections?

37% of COVI-19 autopsies have histopathologic findings in lungs that are consistent with superimposed bronchopneumonia or pulmonary infection

- Findings due to superimposed infection or COVID-19?
- Very limited microbiology and AMR data
- More often focal process rather than diffuse disease
- Often not recognized or treated with antimicrobials ante-mortem

Sizeable minority of COVID-19 decedents die with, but not necessarily from, superimposed bacterial or (less often) fungal infections

Types of COVID-19 secondary infections

Microbiology and AMR will reflect local epidemiology and host risk factors

Bloodstream infections
- Endocarditis, septic emboli, abscesses

Urinary tract infections

Skin and soft tissue infections
Clostridiodes difficile infections

Lung:
P. aeruginosa, K. pneumoniae, C. koseri, S. maltophilia

Urine:
E. Coli, Proteus, K. pneumoniae

● MDR, ESBL, CRE infections diagnosed

Blood:
S. aureus, coag negative *Staph, Strep* spp., *Candida*

Co-infections
- Community acquired pneumonia, urinary tract infection, skin/soft tissue infection, *C difficile* infection, febrile neutropenia

Secondary infections
- Hospital/ventilator pneumonia, bloodstream infection, urinary tract infection, *C. difficile* infection

VAPHS experience, through 7/31/20

- Present w co-infxn, 9%
- Develop secondary infxn, 19%
- No co- or secondary infxn, 72%

Lung: *P. aeruginosa, K. pneumoniae, C. koseri, S. maltophilia*

Urine: *E. Coli, Proteus, K. pneumoniae*

- MDR, ESBL, CRE infections diagnosed

Blood: *S. aureus*, coag negative *Staph, Strep* spp., *Candida*
COVID-19: Antimicrobial stewardship strategies

<table>
<thead>
<tr>
<th>Stewardship group</th>
<th>Stewardship objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. No treatment</td>
<td>Limit unnecessary use, include rapid diagnostics (negative predictive values)</td>
</tr>
<tr>
<td>2. Empiric treatment</td>
<td>Target most likely pathogens, rapid de-escalation, limit duration, aggressive diagnostic testing (NPVs)</td>
</tr>
<tr>
<td>3. Treat co-infection</td>
<td>Promote narrow spectrum, short course, oral</td>
</tr>
<tr>
<td>4. Treat secondary infection</td>
<td>Target nosocomial pathogens, promote narrow spectrum, short course</td>
</tr>
</tbody>
</table>

Gp 1. No antimicrobials 41%
Gp 2. Empiric treatment, no infxn diagnosed 31%
Gp 3. Treat for co-infxn 9%
Gp 4. Treat for secondary infxn, 19%
Impact of COVID-19 on hospital antibiotic use

VAPHS Days of therapy (DOT)

VAPHS bed days of care (BDOC)

VAPHS DOT/1,000 BDOC

Non-antipseudomonal PNCs

DOT/1,000 BDOC

Macrolides

DOT/1,000 BDOC

Significantly increased DOT/1000 BDOC of agents vs. CAP

- Patients with CAP/suspected CAP disproportionately presenting to hospital?
- Over-treatment of suspected CAP?

Outpatient antibiotic use

Significant reductions in prescription fills in April 2020 for the ten most commonly prescribed outpatient antibiotics

- No significant rebound, April-July 2020: Azithromycin, amoxicillin-clavulanate, levofloxacin
- Rebound April-July 2020, but still below baseline: Amoxicillin, doxycycline

Prescription fills for outpatient antibiotics recommended against CAP or commonly used against respiratory tract infections remain significantly below baseline

- Patients not seeking care? Clinicians less likely to prescribe (unnecessary) agents?
Will COVID-19 result in increased AMR?

Pro

- Antibiotic prescribing in excess of secondary infections, suggesting inappropriate use
- Many COVID-19 epicentres also AMR epicentres
- Burden of antibiotic use in hospitalized patients increased, even outside of epicentres
- Reports of HAI outbreaks associated with breakdowns in infection prevention
- Effects of COVID-19 on public health infrastructure, sanitation, healthcare delivery, governance may indirectly impact AMR and transmission
- Secondary infections may increase as COVID-19 treatment evolves (e.g., dexamethasone)
- Co-circulation of SARS-CoV-2 and influenza may fuel inappropriate antibiotic prescribing

Con

- Overall antibiotic use in humans has decreased in many places
- Major determinant of AMR rates is spread, which may be decreased with COVID-19 travel restrictions, enhanced attention to infection prevention, etc.
- Better COVID-19 outcomes may decrease pools of high risk critically ill patients, including those on ventilators, receiving hemodialysis, etc.
- Increased emphasis on diagnosing respiratory viral infections may decrease inappropriate antibiotic treatment
- Data from southern hemisphere suggest that impact of influenza may be lessened by COVID-19 precautions

COVID-19 and AMR story will be dynamic, and likely to differ from region to region, hospital to hospital, and unit to unit within hospitals

- AMR was a major problem before COVID-19, and it will remain a problem

COVID-19 and AMR: Needs moving forward

• Report our experiences and data
• More rigorous microbiology and definitions of superimposed infections in clinical and postmortem studies
• Surveillance data on antimicrobial use and AMR
• Education
 • It’s OK not to get/give an antibiotic
 • AMR has not gone away