THE INTERSECTION OF
Antibiotic Resistance (AR),
Antibiotic Use (AU), and COVID-19
for the Presidential Advisory Council on Combating Antibiotic-Resistant Bacteria

Arjun Srinivasan, MD
CAPT, USPHS
Associate Director for Healthcare-Associated Infection (HAI) Prevention Programs
Division of Healthcare Quality Promotion
National Center for Emerging and Zoonotic Infectious Diseases

February 10, 2021
CDC AR Investments Support U.S. through Pandemic

- **500+ experts** in infection prevention and control, HAI, AR, laboratorians responding domestically
- AR Lab Network in 50 states, several cities, territories to provide COVID-19 testing and identify AR outbreaks
- Data collection systems, like the National Healthcare Safety Network, gather COVID-19 and AR/AU data
- CDC antibiotic stewardship tools for frontline workers
- Infection control **experts responding globally** to COVID-19
- Building on foundational innovations for AR **sewage surveillance** to detect COVID-19 in wastewater
- Leverage antibiotic stockpile for continuity of TB treatment due to drug shortages

**CDC Funding 2016-2020:**

- **$558+ million** across all 50 state and several local health departments for detection/prevention
- CDC has invested **$160+ million** in 100+ institutions to investigate AR innovations across One Health

Preliminary unpublished analysis, please do not reproduce without permission
Key Takeaways: AR Infections

- Healthcare infection control is critical to fight AR and COVID-19.
  - No clear evidence that patients with COVID-19 are more susceptible to bacterial/fungal infections—similar frequency as patients with influenza-like illness (ILI). However, sporadic outbreaks of AR infections in COVID-19 units & higher rates of hospital-onset infections are being reported.
  - COVID-19 can create a perfect storm for AR infections in healthcare settings: increased length of stay, increased number of patients, staffing shortages, sick patients, antibiotic use, challenges implementing infection prevention and control.

- Some preliminary analyses have identified increases in hospital-onset resistant infections (e.g., MRSA) and potential changes for community-onset infections.
  - Given the significant changes in healthcare utilizations and, possibly, lab testing (due to supply issues) during the pandemic, additional analyses are needed to assess the net impacts on AR threat pathogens.

- Findings highlight continued importance of healthcare infection control as one of the foremost tools needed to address emerging infectious diseases.
AR Pathogen Outbreaks and COVID-19

- CDC and public health partners responded to 20 outbreaks of AR pathogens in COVID-19 treatment and observation units since April 2020
- 2 MMWRs about outbreaks from Urgent Threats in hospitals during COVID-19 surges

**New Jersey:** 34 cases of carbapenem-resistant *Acinetobacter baumannii* attributed to changes in infection prevention and control practices\(^1\)

**Florida:** 39 cases of *Candida auris* attributed to unconventional PPE practices and environmental contamination\(^2\)

- Outbreaks resolve after surge but long-term impact on spread of AR pathogens in a region is uncertain


Preliminary unpublished analysis, please do not reproduce without permission
Key Takeaways: Antibiotic Use

- **Hospitals:** Lots of variability.
  - Overall increases in some agents (azithromycin/ceftriaxone). No national increases in broad spectrum agents; some facilities have seen shifting.
  - Decreases in overall prescribing vary; facilities with more COVID-19 cases had higher rates of prescribing on average for azithromycin/ceftriaxone.

- **Outpatient:** Significant drop in antibiotic prescribing.
  - Drop appears related to decrease in healthcare utilization; however, antibiotic use has remained lower than pre-pandemic levels even as healthcare utilization has risen.

- **Nursing Homes:** Spikes in use.
  - Spikes were greatest early in the pandemic and subsequent increases were lower.
About Data Shown Today

Preliminary data provide the largest snapshot to date about relative burden of AR infections and antibiotic use in U.S. patients with COVID-19.

Hospital data reflect:
- Infection data from 150+ hospitals and 14,000 hospital discharges
- Antibiotic use data from 1,400+ hospitals & 4+ million hospital discharges
- 2 data systems: CDC’s National Healthcare Safety Network and Premier Healthcare Database

Outpatient data reflect:
- National estimates extrapolated from 92% of retail prescriptions (IQVIA data)

Nursing home data reflect:
- Pharmacy info based on PharMerica data from 1,900 U.S. nursing homes
AR Pathogens & SARS-CoV-2 in Hospitalized Patients
## Patient Discharge Data: Flu & COVID-19

<table>
<thead>
<tr>
<th></th>
<th>Patients with Influenza-Like Illness (Jan–March 2019)</th>
<th>Patients with COVID-19 (Jan–October 2020)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median length of stay</td>
<td>5.88 days</td>
<td>8.20 days</td>
</tr>
<tr>
<td>Discharges with bacterial/fungal culture</td>
<td>55.8%</td>
<td>56.7%</td>
</tr>
<tr>
<td>Discharges with an AR-positive culture with a susceptibility result</td>
<td>12.4%</td>
<td>9.1%</td>
</tr>
</tbody>
</table>

Source: Premier Healthcare Database

Influenza-Like Illness Definition: A hospitalization with a discharge during January 1, 2019-March 30, 2019, and any of the following ICD-10-CM codes: B97.89, H66.9, H66.90, H66.91, H66.92,H66.93, J00, J01.9, J01.90, J06.9, J09.X, J10.X, J11.X, J12.89, J12.9, J18, J18.1, J18.8, J18.9, J20.9, J40, R05, R50.9

COVID-19 Definition: An ICD-10-CM code of U07.1 (confirmed) with a discharge date April–October 2020 or ICD-10-CM code of B97.29 (suspected) with a discharge date March–April 2020, and admission dates February–April 2020

Data collected January 10, 2021
Frequency of Positive Cultures from Patients with COVID-19 and ILI

Proportion of discharges with a positive culture

- Influenza-Like Illness (2019)
- COVID-19 (2020)

Overall: -27%
Community Onset: -43%
Hospital Onset: +29%

Source: Premier Healthcare Database
AR Pathogens in Hospitalized Patients: Community-Onset Infections Only

Rate of community-onset resistant organisms per 10,000 discharges

- MRSA: -43%
- ESBL: +4%
- CRE: -32%
- VRE: -33%
- CRAB: -15%
- CRAB*: -22%
- CRPA: -55%

Source: Premier Healthcare Database

Preliminary unpublished analysis, please do not reproduce without permission
AR Pathogens in Hospitalized Patients: Hospital-Onset Infections Only

Rate of hospital-onset resistant organisms per 10,000 discharges

- **MRSA**: +42%
- **ESBL**: +134%
- **CRE**: +46%
- **VRE**: -25%
- **CRAB**: +536%
- **CRAB***: +59%
- **CRPA**: +46%

*estimate removing outbreak in a single hospital

Source: Premier Healthcare Database

Preliminary unpublished analysis, please do not reproduce without permission
## Increase in Healthcare-Onset MRSA Bacteremia SIR in 2020: Quarter 2

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td># Hospitals</td>
<td>3,039</td>
<td>3,039</td>
<td></td>
</tr>
<tr>
<td># Hospitals with ≥ 1 HO event</td>
<td>890</td>
<td>882</td>
<td>-8 (-0.9%)</td>
</tr>
<tr>
<td>HO MRSA Events</td>
<td>1,690</td>
<td>1,704</td>
<td>14 (0.8%)</td>
</tr>
<tr>
<td># Predicted HO MRSA</td>
<td>2,064.55</td>
<td>1,813.43</td>
<td>-251.12 (-12.2%)</td>
</tr>
<tr>
<td>Patient Days</td>
<td>32,937,724</td>
<td>28,058,539</td>
<td>-4,879,185 (-14.8%)</td>
</tr>
<tr>
<td>Inpatient HO MRSA Rate</td>
<td>5.1</td>
<td>6.1</td>
<td>0.9 (18.4%)</td>
</tr>
<tr>
<td>SIR</td>
<td>0.82</td>
<td>0.94</td>
<td>0.12 (14.8%)</td>
</tr>
<tr>
<td>Admissions</td>
<td>7,719,330</td>
<td>6,368,916</td>
<td>-1,350,414 (-17.5%)</td>
</tr>
<tr>
<td>Inpatient CO MRSA Rate</td>
<td>5.3</td>
<td>5.9</td>
<td>0.5 (10.0%)</td>
</tr>
<tr>
<td>Outpatient MRSA Events</td>
<td>10,615</td>
<td>10,463</td>
<td>-152 (-1.4%)</td>
</tr>
<tr>
<td>Outpatient Encounters</td>
<td>28,792,424</td>
<td>19,056,924</td>
<td>-9,735,500 (-33.8%)</td>
</tr>
<tr>
<td>Outpatient MRSA Rate</td>
<td>3.7</td>
<td>5.5</td>
<td>1.8 (48.9%)</td>
</tr>
</tbody>
</table>

Source: National Healthcare Safety Network (NHSN)
## Larger Increases in Healthcare-Onset MRSA Bacteremia in 2020: Quarter 3

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td># Hospitals</td>
<td>3,157</td>
<td>3,157</td>
<td></td>
</tr>
<tr>
<td># Hospitals with ≥1 HO event</td>
<td>929</td>
<td>1,082</td>
<td>153 (16.5%)</td>
</tr>
<tr>
<td>HO MRSA Events</td>
<td>1,873</td>
<td>2,364</td>
<td>491 (26.2%)</td>
</tr>
<tr>
<td># Predicted HO MRSA</td>
<td>2,339.17</td>
<td>2,359.80</td>
<td>20.63 (0.9%)</td>
</tr>
<tr>
<td>Patient Days</td>
<td>37,062,230</td>
<td>36,285,640</td>
<td>-776,590 (-2.1%)</td>
</tr>
<tr>
<td>Inpatient HO MRSA Rate</td>
<td>5.1</td>
<td>6.5</td>
<td>1.5 (28.9%)</td>
</tr>
<tr>
<td>SIR</td>
<td>0.80</td>
<td>1.00</td>
<td>0.20 (25.1%)</td>
</tr>
<tr>
<td>Inpatient CO MRSA Events</td>
<td>4,620</td>
<td>4,399</td>
<td>-221 (-4.8%)</td>
</tr>
<tr>
<td>Admissions</td>
<td>8,747,884</td>
<td>8,157,200</td>
<td>-590,684 (-6.8%)</td>
</tr>
<tr>
<td>Inpatient CO MRSA Rate</td>
<td>5.3</td>
<td>5.4</td>
<td>0.1 (2.1%)</td>
</tr>
<tr>
<td>Outpatient MRSA Events</td>
<td>12,277</td>
<td>12,919</td>
<td>642 (5.2%)</td>
</tr>
<tr>
<td>Outpatient Encounters</td>
<td>31,896,130</td>
<td>25,779,810</td>
<td>-6,116,320 (-19.2%)</td>
</tr>
<tr>
<td>Outpatient MRSA Rate</td>
<td>3.8</td>
<td>5.0</td>
<td>1.2 (30.2%)</td>
</tr>
</tbody>
</table>

Source: National Healthcare Safety Network (NHSN)
Antibiotic Use During the COVID-19 Pandemic - Hospitals
Aggregate Hospital Antibiotic Use: All Antibiotics

National Healthcare Safety Network (710 hospitals)
Days of Therapy per 1,000 Days Present – All Antibacterial Agents

Premier Healthcare Database (716 hospitals)
Days of Therapy per 1,000 patient days – All Antibacterial Agents

Note: NHSN AU days present denominator counts any portion of a day when a patient was hospitalized and thus is larger than the Premier patient day denominator, which counts 24-hour periods.
% indicates percent difference in pooled mean rate by year.
Aggregate Hospital Antibiotic Use: Azithromycin

National Healthcare Safety Network (710 hospitals)
Days of Therapy per 1,000 Days Present – Azithromycin

Premier Healthcare Database (716 hospitals)
Days of Therapy per 1,000 patient days – Azithromycin

Note: NHSN AU days present denominator counts any portion of a day when a patient was hospitalized and thus is larger than the Premier patient day denominator, which counts 24-hour periods. % indicates percent difference in pooled mean rate by year.
Aggregate Hospital Antibiotic Use: Ceftriaxone

National Healthcare Safety Network (710 hospitals)
Days of Therapy per 1,000 Days Present – Ceftriaxone

Premier Healthcare Database (716 hospitals)
Days of Therapy per 1,000 patient days – Ceftriaxone

Note: NHSN AU days present denominator counts any portion of a day when a patient was hospitalized and thus is larger than the Premier patient day denominator, which counts 24-hour periods. % indicates percent difference in pooled mean rate by year.
Aggregate Hospital Antibiotic Use:
Piperacillin-Tazobactam

National Healthcare Safety Network (710 hospitals)
Days of Therapy per 1,000 Days Present – Piperacillin-Tazobactam

Premier Healthcare Database (716 hospitals)
Days of Therapy per 1,000 patient days – Piperacillin-Tazobactam

Note: NHSN AU days present denominator counts any portion of a day when a patient was hospitalized and thus is larger than the Premier patient day denominator, which counts 24-hour periods.
% indicates percent difference in pooled mean rate by year.
Hospital-Level Antibiotic Use: Azithromycin

National Healthcare Safety Network (710 hospitals)

Median shifts in prescribing when a hospital is compared to itself and normalized to January 2020 – Azithromycin

<table>
<thead>
<tr>
<th>Month</th>
<th>Shift</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAR</td>
<td>5.9*</td>
</tr>
<tr>
<td>APR</td>
<td>6.9*</td>
</tr>
<tr>
<td>MAY</td>
<td>-3.9</td>
</tr>
<tr>
<td>JUN</td>
<td>-3.6</td>
</tr>
<tr>
<td>JUL</td>
<td>0.3</td>
</tr>
<tr>
<td>AUG</td>
<td>0.5</td>
</tr>
<tr>
<td>SEPT</td>
<td>-2.4*</td>
</tr>
<tr>
<td>OCT</td>
<td>-0.8</td>
</tr>
</tbody>
</table>

*indicates statistical significance

Percent of facilities with a positive increase in antibiotic use, normalized to January 2020 – Azithromycin

<table>
<thead>
<tr>
<th>Month</th>
<th>Negative Shift</th>
<th>Positive Shift</th>
<th>No Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAR</td>
<td>33.1%</td>
<td>66.5%</td>
<td>0.4%</td>
</tr>
<tr>
<td>APR</td>
<td>36.5%</td>
<td>63.0%</td>
<td>0.6%</td>
</tr>
<tr>
<td>MAY</td>
<td>60.7%</td>
<td>38.9%</td>
<td>0.4%</td>
</tr>
<tr>
<td>JUN</td>
<td>61.1%</td>
<td>38.3%</td>
<td>0.6%</td>
</tr>
<tr>
<td>JUL</td>
<td>48.7%</td>
<td>50.8%</td>
<td>0.4%</td>
</tr>
<tr>
<td>AUG</td>
<td>47.9%</td>
<td>51.8%</td>
<td>0.3%</td>
</tr>
<tr>
<td>SEPT</td>
<td>58.5%</td>
<td>41.0%</td>
<td>0.6%</td>
</tr>
<tr>
<td>OCT</td>
<td>53.1%</td>
<td>46.6%</td>
<td>0.3%</td>
</tr>
</tbody>
</table>

Preliminary unpublished analysis, please do not reproduce without permission
Hospital-Level Antibiotic Use: Piperacillin-Tazobactam

National Healthcare Safety Network (710 hospitals)

Median shifts in prescribing when a hospital is compared to itself and normalized to January 2020 – Piperacillin-Tazobactam

Percent of facilities with a positive increase in antibiotic use, normalized to January 2020 – Piperacillin-Tazobactam
Hospital Antibiotic Use: All Antibiotics Based on COVID-19 Burden – Premier Data

Premier Healthcare Database (716 hospitals)
Median Total Antibiotic Use during March-October per 1,000 patient days by COVID-19 Hospital Burden

Hospitals were categorized into quartiles by COVID-19 burden based on the rate of COVID-19 cases per 10,000 discharges for each hospital and month.

*indicates statistical significance

Preliminary unpublished analysis, please do not reproduce without permission
Hospital Antibiotic Use: Azithromycin
Based on COVID-19 Burden – Premier Data

Premier Healthcare Database
(716 hospitals)
Median Azithromycin Use per 1,000 patient days by COVID-19 Hospital Burden

Hospitals were categorized into quartiles by COVID-19 burden based on the rate of COVID-19 cases per 10,000 discharges for each hospital and month.

*indicates statistical significance

Preliminary unpublished analysis, please do not reproduce without permission
Hospital Antibiotic Use: Piperacillin-Tazobactam
Based on COVID-19 Burden – Premier Data

Premier Healthcare Database
(716 hospitals)
Median Piperacillin-Tazobactam Use per 1,000 patient days by COVID-19 Hospital Burden

<table>
<thead>
<tr>
<th>Quartile 1 *</th>
<th>Quartile 2 *</th>
<th>Quartile 3 *</th>
<th>Quartile 4 *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate per 1,000 patient days</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hospitals were categorized into quartiles by COVID-19 burden based on the rate of COVID-19 cases per 10,000 discharges for each hospital and month.

*indicates statistical significance

Preliminary unpublished analysis, please do not reproduce without permission
Antibiotic Use During the COVID-19 Pandemic - Outpatient
National Outpatient Antibiotic Prescription Trends

December 2020
32% year-over-year decrease
7% month-over-month increase (compared with 14% MOM increase in Dec 2019)

Source: IQVIA National Prescription Audit
Last update: January 19, 2021

Preliminary unpublished analysis, please do not reproduce without permission
National Outpatient Antibiotic Prescription Trends

December 2020
32% year-over-year decrease
7% month-over-month increase (compared with 14% MOM increase in Dec 2019)

Source: IQVIA National Prescription Audit
Last update: January 19, 2021

Preliminary unpublished analysis, please do not reproduce without permission
National Outpatient Antibiotic Prescription Trends: Azithromycin

December 2020
40% year-over-year decrease
21% month-over-month increase *(compared with 25% MOM increase in Nov 2019)*

Source: IQVIA National Prescription Audit
Last update: January 19, 2021

*Preliminary unpublished analysis, please do not reproduce without permission*
Antibiotic Use During the COVID-19 Pandemic – Nursing Homes
Nursing Home Antibiotic Dispensing Rates

Residents with antibiotic dispensed and total residents serviced, 2019 vs. 2020
Higher Rates of Antibiotics Commonly Used for Respiratory Infections in Nursing Homes

Antibiotics higher in 2020 than 2019
- Azithromycin
- Ceftriaxone
- Doxycycline

Antibiotics lower in 2020 than 2019
- Levofloxacin
- Amoxicillin
More AR & COVID-19 Studies Coming from CDC

- Academic and healthcare collaborations to better understand COVID-19 and the impacts on AR/AU, some examples:
  - University of Pennsylvania
  - Washington University School of Medicine
  - Cook County Health, Rush University, and Northwestern Medicine
- Deeper dive on *C. auris* and COVID-19 in Orange County and Chicago
- International collaborations to explore bacterial/fungal infections and antibiotic use in patients with COVID-19 in South America and Asia
- Publications & additional studies from preliminary data presented today
Future Implications for AR & COVID-19

- Continued emphasis of **healthcare infection prevention and control in infectious disease transmission cannot be overestimated**
  - Spread of pathogens can be contained and outbreaks can be prevented but we must ensure ongoing robust infection control training, continuity of PPE supply, support for frontline healthcare providers

- **Support greater resiliency in antibiotic resistance and antibiotic use programs** in healthcare and state/local health departments
  - Without resiliency, critical work will not happen as new threats emerge

- Continued gathering and analysis of AR and AU data from multiple sources like those presented today is critically important as it allows resilience when some systems are impacted and provides a fuller picture of impact
Acknowledgements

James Baggs       Jessica Epting       Sarah Kabbani       Erin O’Leary       Dawn Sievert
Daniel Budnitz   Anthony Fiore       Alex Kallen         Lindsay Parnell   Minn Soe
Katy Capers      Andrew Geller       Laura King           Sujan Reddy        Sharon Tsay
Michael Craig    Katryna Gouin       Jennifer Lind       Rebecca Roberts    Maroya Walters
Heather Dubendris Lauri Hicks       Maribeth Lovegrove   Ashley Rose        Amy Webb
Shae Duka        John Jernigan      Natalie McCarthy     Nadine Shehab      Hannah Wolford
Jonathan Edwards Sarah Jones         Melinda Neuhauser    Alicia Shugart    Hsiu Wu

For more information, contact CDC
1-800-CDC-INFO (232-4636)

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.
Find More Info on CDC’s Efforts to Combat AR