

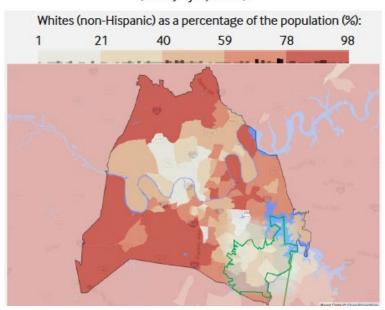
Addressing Racial and Ethnic Health Disparities During a Pandemic

Consuelo H. Wilkins, MD, MSCI

Chief Equity Officer
Professor of Medicine
Vanderbilt University Medical Center

Presidential Advisory Council of Combating Antibiotic-Resistant Bacteria January 25, 2023

COVID-19 Health Equity Workstream


Consuelo H. Wilkins, Elisa Friedman, André L. Churchwell, Tiercy Fortenberry, Amber Humphrey, Pam Jones, Sunil Kripalani, Larry Prisco, Jill Pulley, Terrell Smith

SUB-STREAM	OBJECTIVES
Effective Communication	 Effectively communicate COVID-19 risks and preventative strategies to: Individuals at risk for health inequities – minoritized racial/ethnic groups, socioeconomically disadvantaged, people w preferred language not English Employees: including nutrition, maintenance, environmental services
Equitable Testing	 Provide/facilitate timely testing Report aggregate test results by key demographics including age, gender, race/ethnicity, preferred language, and ZIP code
Equitable Care	 Provide high quality care that does not vary by race/ethnicity, gender, SES Effectively communicate post-discharge and facilitate transitions of care Report aggregate outcomes by age, gender, and race/ethnicity, ZIP
Inclusivity in Clinical Trials	 Increase awareness of importance of clinical research for COVID-19 given there is no proven effective therapy Engage/enroll racial/ethnic minorities, others socially disadvantaged
Inclusive Implementation of Telehealth	 Effectively use telehealth to provide care for patients including those with limited health literacy, English proficiency, internet access Increase adoption of telehealth among racial/ethnic minorities, patients with, limited English proficiency, and underserved rural communities

Innovations in Care Delivery

Most Covid-19 Cases at Vanderbilt University Medical Center (as of July 1, 2020)

ARTICLE

A Systems Approach to Addressing Covid-19 Health Inequities

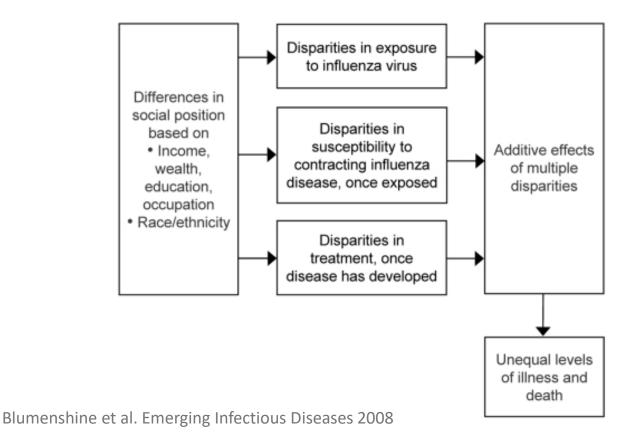
Consuelo, H. Wilkins, MD, MSCI, Elisa C. Friedman, MS, André L. Churchwell, MD, Jennifer M. Slayton, MSN, RN, Pam Jones, DNP, RN, NEA-BC, FAAN, Jill M. Pulley, MBA, Sunil Kripalani, MD, MSc, SFHM

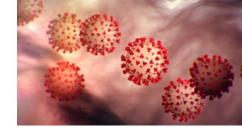
Socioeconomic Data of ZIP Code with Highest Number of Covid-19 Cases Compared with Nashville Metropolitan Area

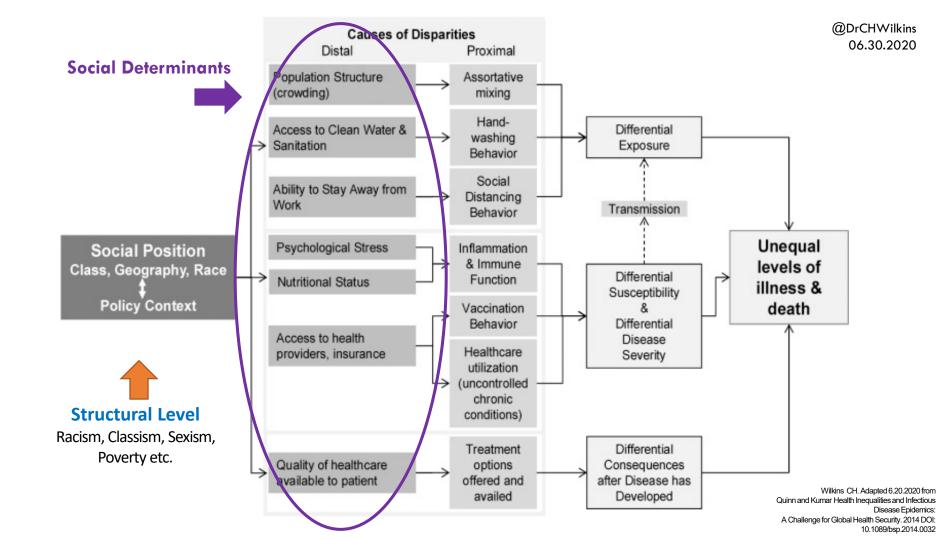
covid 17 cases compared manifestivine metropolitari7 aed					
	ZIP Code	Nashville, TN			
	37013	Metro Area			
Population	97,819	1,932,099			
Vanderbilt Covid-19 cases (7.1.20)	381	2,470			
Black/African American	35%	15%			
Hispanic/Latino	16%	7%			
Asian/Asian American	4%	3%			
High school or equivalent	87.2%	89.5%			
Language other than English	30.3%	10.3%			
spoken at home					
Foreign born	25%	8%			
Median home value	\$167,900	\$217,500			
Household size	2.8	2.6			
Adults employed	73.1%	67.6%			
Per capital income	\$25,568	\$33,606			
Persons below poverty line	15.7%	12.4%			

Source: Socioeconomic data from Census Reporter. 2020. Accessed November 14, 2020. http://censusreporter.org/profiles/86000US37013-37013/and https://censusreporter.org/profiles/31000US34980-Nashville-Davidson-franklin-tn-metro-area/. Map from Statistical Atlas. Demographics. 2020. Accessed November 14, 2020. https://statisticalatlas.com/county/Tennessee/Davidson-map.

VUMC SARS CoV-2 Tests by Race, Ethnicity, Language – 1.12.2022						
	Population	SARS-Cov-2		(+)SARS CoV-2		Within-group (+)
	% Nashville MSA population total: 1,933,860	n (% of 340,645)		n (% of 4	49,180)	
RACE/ETHNICITY						
White	76.7%	225,767	(66.3%)	28,699	(58.4%)	12.7%
Black/African American	15.2%	41,249	(12.1%)	6,157	(12.5%)	14.9%
Hispanic / Latino	7.6%	19,686	(5.8%)	2,840	(5.8%)	14.4%
Asian	3.0%	6,340	(1.9%)	879	(1.8%)	13.9%
American Indian	0.2%	666	(0.2%)	95	(0.2%)	14.3%
Other	2.4%	10,568	(3.1%)	1,411	(2.9%)	13.4%
Unknown Race	N/A	56,055	(16.5%)	11,939	(24.3%)	21.3%




VUMC SARS CoV-2 To	ests k	y Race, E	thnicity, Languag	ge – 1.12	.2022	
	Popula	tion	SARS-Cov-2	(+)SARS Co	J-2	Within-group (+)
	% Nashville MSA population total: 1,933,860		n (% of 340,645)	n (9	% of 49,180)	
Preferred Language						
English		88.3%	322,576 (94.7%)	46,161	(93.9%)	14.3%
All Languages other than						
English (102)		11.7%	16,749 (4.9%)	3,019	(6.1%)	18.0%
Spanish		6.4%	10,482 (3.1%)	1,632	(3.3%)	15.6%
Arabic		1.0%	3,472(1.0%)	660	(1.3%)	19.0%
Nepali		< 1%	334(0.1%)	93	(0.2%)	27.8%
Unknown language		N/A	1,320(0.4%)	246	(0.5%)	18.6%


Why are minoritized racial and ethnic groups and people with limited English proficiency disproportionately impacted by COVID-19?

Health Inequities & COVID-19

@DrCHWilkins

Equitable Pandemic Preparedness and Rapid Response: Lessons from COVID-19 for Pandemic Health Equity

Journal of Health Politics, Policy and Law, Vol. 45, No. 6, December 2020 DOI 10.1215/03616878-8641469 © 2020 by Duke University Press

Philip M. AlbertiAssociation of American Medical Colleges

Paula M. Lantz University of Michigan

Consuelo H. Wilkins Vanderbilt University Medical Center

FOCUS ON UPSTREAM FACTORS

Table 1 Essential Multisector Actions for Pandemic Health Equity Preparedness

Build strong public health infrastructure that includes:

- Stockpiles of essential materials to prevent exposure (e.g., high-quality masks, hand sanitizer, personal protective equipment, etc.)
- Stockpiles of essential materials for testing, diagnosis, and antibody testing
- Plans for the equitable distribution of stockpiled materials
- Access to rapid disease testing, antibody testing, diagnosis, and follow up
- Rapid contact tracing
- Increases in funding to local, state, regional, tribal, and federal public health agencies

Ensure the material conditions of health for all (as defined by the World Health Organization):

- Strong food access and security systems
- High levels of housing security and affordability
- Low levels of housing crowding
- High levels of air and water quality
- Prohibitions on evictions and significant rent hikes during epidemics and pandemics
- Prohibitions on water and other utility shutoffs during epidemics and pandemics
- Financial access to health care (health insurance coverage)
- Strong health care safety net system, including community health centers and public :
 health clinics
- Sufficient health care providers (doctors, nurses, psychologists, community health workers, etc.) to meet all communities' needs

Equitable Pandemic Preparedness and Rapid Response: Lessons from COVID-19 for Pandemic Health Equity

Journal of Health Politics, Policy and Law, Vol. 45, No. 6, December 2020 DOI 10.1215/03616878-8641469 © 2020 by Duke University Press

Philip M. AlbertiAssociation of American Medical Colleges

Paula M. Lantz University of Michigan

Consuelo H. Wilkins Vanderbilt University Medical Center

FOCUS ON DOWNSTREAM FACTORS

Table 2 Pandemic Health Equity Rapid Response Tactics

Effectively communicate health risk:

- Engage trusted community organizations and leaders to develop and disseminate messaging
- Develop messaging that is relevant to socially vulnerable communities and recognizes the varying socioeconomic needs and differing levels of trust of health systems and government
- Create materials at the appropriate reading level for broad audiences
- Make information available in multiple languages using processes beyond translation that include a cultural understanding of specific communities with limited English proficiency
- Use channels viewed as trusted and credible by socially vulnerable communities

Implement socioculturally appropriate surveillance and risk reduction strategies:

- Create community-based surveillance programs that leverage community assets
- Use community health workers and public health educators to collect surveillance data and share risk reduction information
- Distribute information and supplies for risk reduction such as masks and hand sanitizer via community- and faith-based organizations

Ensure timely and easily accessible testing:

- Use community-level data such as social vulnerability indices, availability of transportation, and population density to determine location and hours of operation for testing sites
- Locate testing within the most socially vulnerable communities, ideally co-located h
 with trusted community organizations
- Provide testing at no cost, regardless of insurance status
- Offer free transportation to testing sites
- Monitor testing access data disaggregated by race, ethnicity, and language, and rapidly shift or expand testing based on identified inequities
- Provide resources and post-testing information in multiple languages

Provide equitable and rapid access to quality health care:

- Broadly disseminate maps and location details of health care providers and clinics
- Deploy mobile testing and treatment units in communities with limited transportation access
- Engage trusted community organizations in messaging and ensure information is available in multiple languages

MAJOR ARTICLE

Socioeconomic Factors Explain Racial Disparities in Invasive Community-Associated Methicillin-Resistant Staphylococcus aureus Disease Rates

Isaac See, Paul Wesson, Nicole Gualandi, Ghinwa Dumyati, Lee H. Harrison, Lindsey Lesher, Joelle Nadle, Susan Petit, Claire Reisenauer, William Schaffner, Amy Tunali, William Schaffner, William Schaffner, Amy Tunali, William Schaffner, William Schaf

Table 3. Univariate Rate Ratios for Association Between Neighborhood Socioeconomic Factors and Invasive Community-Associated Methicillin-Resistant Staphylococcus aureus Incidence

Variable	Rate Ratio ^a	(95% Confidence Interval)	PValue
Low-income households	19.65	(14.78–26.12)	<.0001
High-income households	0.008	(.003–.02)	<.0001
Poverty	16.78	(11.92–23.62)	<.0001
Income inequality index	12.99	(6.54–25.82)	<.0001
Crowding	437.72	(173.16–1106.48)	<.0001
Expensive homes	0.46	(.31–.68)	.0001
Rural areas	0.36	(.25–.52)	<.0001
Low education	47.65	(33.96–66.86)	<.0001
High education	0.11	(.08–.14)	<.0001
Health insurance	0.08	(.05–.11)	<.0001
Medically underserved area	2.40	(2.16–2.68)	<.0001

*Socioeconomic status variables were coded as ranging from 0 (0% of the census tract with this characteristic) to 1 (100% of the census tract with this characteristic). As an example to assist in interpreting the rate ratios, the rate ratio of 19.65 for low income means that for each increase of 10% in households in a census tract with low income, we would predict an increase in the methicillin-resistant Staphylococcus aureus rate (cases/population) of 1.35-fold (the 10th root of 19.65).

Recommendations for Equity in Pandemic Preparedness

Consider: Health systems are built on structural inequities. What inequities might be embedded? How will you mitigate? What opportunities are there to address inequities?

- Recognize underlying social and structural factors that drive health
 - Avoid assumptions of biological differences due to race or ethnicity
- Develop strategies to address upstream and downstream factors
- Effectively communicate risk to minoritized groups
- Recognize hidden inequities
 - lower rates of AMR among minoritized groups may be due to lack of access to care = higher rates of other conditions and death

Image from democracyandme.org

Consuelo H. Wilkins, MD, MSCI Chief Equity Officer Vanderbilt University Medical Center consuelo.h.wilkins@vumc.org