Welcome

Jacquelyn Fredrick, PhD (Chair)
Retired CEO
Versiti, Inc.

Emily A. Blumberg, MD, FACP (Vice-Chair)
Director, Transplant Infectious Diseases
Hospital of the University of Pennsylvania
Established in September of 1997 by Executive Order to provide the Secretary of HHS with advice, information, and recommendations on policies and programs related to blood and tissue safety and availability.

OBJECTIVES AND SCOPE OF ACTIVITIES: The Secretary is responsible for issuing and enforcing regulations concerning the collection, preparation, and distribution of blood, blood products, tissues and organs; for issuing and enforcing regulations related to the transmission of communicable diseases; and for carrying out research in health fields including diseases involving these products.

The ACBTSA will advise, assist, consult with, and make policy recommendations to the Secretary, through the Assistant Secretary for Health, regarding these broad responsibilities related to the safety of blood, blood products, tissues and organs as further delineated under Description of Duties. For solid organs and blood stem cells, the Committee’s work will be limited to policy issues related to donor derived infectious disease complications of transplantation.

Learn more: https://www.hhs.gov/ohaidp/initiatives/blood-tissue-safety/index.html
FDA/BPAC UPDATE

Carlos H. Villa, MD, PhD
Medical Officer
CRS/DBCD/OBRR/CBER/FDA
120th Meeting of the Blood Products Advisory Committee

U.S. Food and Drug Administration
Center for Biologics Evaluation and Research
Silver Spring, MD
March 20-21, 2019

Carlos H. Villa, MD PhD
Medical Officer
Division of Blood Components and Devices
Office of Blood Research and Review
Topics for Discussion

• **Topic I:** Evaluation of strategies to reduce the risk of Zika Virus (ZIKV) transmission by blood and blood components

• **Topic II:** Review of intramural research programs

• **Topic III:** Blood donation policies regarding men who have sex with men (MSM)
Topic I: Evaluation of strategies to reduce the risk of Zika Virus (ZIKV) transmission by blood and blood components

• Introduction to the topic
• Update on the current status of the ZIKV epidemic
• AABB ZIKV Biovigilance Network
• Current Considerations for Reducing the Risk of Transfusion Transmitted ZIKV
• Open Public Hearing / Committee Discussion
Summary of Topic I

• Current FDA guidance (July 2018) recommends universal ZIKV testing for blood donations by nucleic acid testing (minipool or individual donation)

• Large declines in ZIKV disease cases and confirmed ZIKV positive blood donors from 2016 to 2018

• FDA is re-evaluating July 2018 recommendations
Committee Discussion of Topic I

• Committee supported continuing the current strategy of universal testing by minipool or individual donation testing

• Committee felt that additional information and continued surveillance are needed before implementing further policy change
Question 1

• At this time, do the available data support continuing universal testing for ZIKV using MP or ID NAT as recommended in the July 2018 Final Guidance (no policy change at this time)?
 – 11 yes, 4 no
Question 2

• Do the available data support a regional testing option strategy for ZIKV using MP or ID NAT in at-risk U.S. states and territories?
 – 6 yes, 9 no
Question 3

• Do the available data support the elimination of all testing for ZIKV without re-introduction of donor screening for risk factors (e.g. travel) in areas with no risk of ZIKV infection, pending another outbreak in the United States?
 – 14 no, 1 yes
Topic III: Blood Donation Policies Regarding Men Who Have Sex with Men (MSM)

IIIA: Update on Donor Deferral Policies and Donor HIV Risk Questionnaire Study

IIIB: Pathogen Reduction of Platelet Donations as an Alternative Procedure to MSM Donor Deferral
Topic IIIA: Update on Donor Deferral Policies and Donor HIV Risk Questionnaire Study

- Blood Donation Policies Regarding MSM
- International Perspectives on Blood Donor Eligibility in MSM Donors
- Epidemiology of HIV in the United States
- Overview of the Transfusion-Transmitted Infections Monitoring System (TTIMS)
- Donor HIV Risk Questionnaire Study
- Open Public Hearing / Committee Discussion
Summary of Topic IIIA

• FDA MSM deferral policy for blood donation was revised in 2015 FDA guidance to a 12 month deferral

• International policies on MSM donation vary from individual risk-based criteria deferral, to variable time-based deferrals, and to alternative strategies

• Numbers of new HIV infections continue to decline overall, although decline has slowed and certain populations are disproportionately and increasingly affected (e.g. young Black and Latino MSM)
Summary of Topic IIIA (continued)

• Effective antiretroviral therapy has improved lifespan and preexposure prophylaxis is an effective prevention tool
• Since its inception in 2015, TTIMS has established a comprehensive and sophisticated monitoring capability for the U.S. blood supply
• A pilot study assessing the discriminant function of behavioral history questions for predicting recent HIV infection in MSM aims to provide FDA with evidence by which to consider changes in MSM deferral policy
Committee Discussion of Topic IIIA

• The committee was asked to comment on what has been learned from implementing other MSM policies internationally and how this information can inform current U.S. MSM deferral policy

• The committee was also asked to comment on the questions proposed for study in the HIV Risk Questionnaire
Committee Discussion of Topic IIIA (continued)

• Differences in HIV epidemiology and donor screening practices between countries were discussed by the committee

• The committee provided recommendations regarding the proposed questions in the HIV Risk Questionnaire study

• The committee agreed that FDA should pursue data to consider alternative deferral strategies while ensuring the current level of safety and supported improved assessment of risk for all individuals
Topic IIIB: Pathogen Reduction of Platelet Donations as an Alternative Procedure to MSM Donor Deferral

• Introduction the topic
• Proposal for Pathogen Reduction of Platelet Donations from MSM
• Open Public Hearing / Committee Discussion
Summary of Topic IIIB

• FDA may issue an exception or alternative to regulatory requirements ("variance") regarding blood, blood components, or blood products (21 CFR 640.120)

• FDA has received a request for an alternative procedure to MSM deferral in which otherwise eligible MSM donors will donate apheresis platelets that will be pathogen reduced using an FDA-approved device
 – Donations will be tested for all relevant transfusion transmitted infections, including HIV
Committee Discussion

• The majority of the committee expressed the opinion that pathogen reduction as an alternative to MSM deferral would result in safe products intended for transfusion, while noting that care would need to be taken to implement this approach.

• The committee emphasized the need to engage stakeholders.

• The committee reemphasized the need to study and develop individual risk assessment.
Purpose of the Meeting

Emily A. Blumberg, MD, FACP (Vice-Chair)
Director, Transplant Infectious Diseases
Hospital of the University of Pennsylvania
OVERVIEW OF FEDERAL AGENCY ROLES AND RESPONSIBILITIES REGARDING TRANSPLANT SAFETY

MARILYN E. LEVI, MD
Physician of Division of Transplantation
Health Resources Services Administration
Organ and Blood Stem Cell Transplantation in the United States: The role of HRSA

Marilyn E. Levi M.D., Medical Officer
Division of Transplantation (DoT)
Healthcare Systems Bureau (HSB)
Health Resources and Services Administration (HRSA)
Department of Health and Human Services (HHS)
Health Resources and Services Administration (HRSA)

• The primary federal entity responsible for oversight of the solid organ and blood stem cell transplant systems in the U.S. and for initiatives to increase the level of organ and tissue donation in this country

• HRSA oversight is exercised according to:
 ➢ statutory requirements
 ➢ federal regulations
 ➢ federal contracts
Solid Organ Transplantation
Statutory Authorities through HRSA

• NOTA (P.L. 98-105, October 19, 1984), as amended, enables:
 - OPTN
 - SRTR
 - Grant authority – including public and professional education
 - Congressional report on the Scientific and Clinical Status of Organ Transplantation

• The Organ Donation and Recovery Improvement Act (P.L 108-216, April 5, 2004) enables:
 - Public education
 - Living donor assistance – grant mechanism for travel, subsistence and expenses
 - Congressional Report on Organ Donation and the Recovery, Preservation, and Transportation of Organs
Solid Organ Transplantation
Statutory Authorities

 - Enables and clarifies that organ paired donation is not valuable consideration
 - Congressional report on the Long-Term Health Effects of Living Organ Donation

• **HIV Organ Policy Equity Act (HOPE)** (P.L. 113-51, Nov 21, 2013) enables:
 - Development and publication of research criteria relating to transplantation of HIV positive organs into HIV positive individuals by Nov 21, 2015
 - Limited to living and deceased kidney and liver transplantation
Division of Transplantation Oversight

Organ Transplantation

- Organ Procurement and Transplantation Network (OPTN)
- Scientific Registry of Transplant Recipients (SRTR)
- Studies and demonstration projects to increase organ donation and recovery rates
- Organ Donation Public Awareness Program
- National Living Donor Assistance Center (NLDAC)
- Advisory Committee on Organ Transplantation (ACOT)
Division of Transplantation Oversight

Blood Stem Cell Transplantation

• CW Bill Young Transplantation Program
 ➢ Single Point of Access - Coordinating Center
 ➢ Office of Patient Advocacy
 ➢ Stem Cell Therapeutics Outcomes Database (SCTOD)

• National Cord Blood Inventory (NCBI)

• Advisory Council on Blood Stem Cell Transplantation (ACBSCT)
Solid Organ Transplant Data
2017-2018 U.S. Organ Transplant Data

<table>
<thead>
<tr>
<th></th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Transplants</td>
<td>34,770</td>
<td>35,694</td>
</tr>
<tr>
<td>Deceased Donation</td>
<td>10,281</td>
<td>10,721</td>
</tr>
<tr>
<td>Living Donation</td>
<td>6,186</td>
<td>6,834</td>
</tr>
</tbody>
</table>

As of March 3, 2019

113,727 transplant candidates on the waiting list

www.organdonor.gov
2017 - 2018 U.S. Solid Organ Transplant Data

<table>
<thead>
<tr>
<th>Organ Type</th>
<th>Deceased Donor</th>
<th>Living donor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kidney</td>
<td>14,037</td>
<td>5,811</td>
</tr>
<tr>
<td>Liver</td>
<td>7,715</td>
<td>367</td>
</tr>
<tr>
<td>Lung</td>
<td>2,449</td>
<td>0</td>
</tr>
<tr>
<td>Heart</td>
<td>3,244</td>
<td>0</td>
</tr>
<tr>
<td>Kidney/Pancreas</td>
<td>7,713</td>
<td>367</td>
</tr>
<tr>
<td>Pancreas</td>
<td>213</td>
<td>0</td>
</tr>
</tbody>
</table>
HRSA Contract Oversight

- OPTN – operated under contract with HHS/HRSA by the United Network for Organ Sharing (UNOS)

- http://optn.transplant.hrsa.gov

- This website provides data and educational information about organ donation, transplantation, and the matching process
Scientific Registry of Transplant Recipients

- Supports the ongoing performance evaluation of solid organ transplantation in the United States

- Provides analytical support to the OPTN:
 - in the formulation and evaluation of OPTN policies
 - simulation of allocation models using analytic tools to support organ allocation policy development
 - statutory outcomes reporting (patient and graft survival)

- Current contractor is Minneapolis Medical Research Foundation - Chronic Disease Research Group
Critical Balance Organ Availability Versus Patient Safety
Biovigilance in the United States
HRSA Biovigilance Monitoring and Safety

- OPTN: *ad hoc* Donor Transmission Advisory Committee
- UNOS Patient Safety Portal
- Public Health Service (PHS) Biovigilance Working Group
- PHS Guidelines
- National Marrow Donor Program (NMDP)

DPSM Advisory Committee of the NMDP
Chain of Events if a Potential Donor Derived Transmission Event is Suspected

- OPTN/UNOS
- OPO
- Transplant Center
Ad Hoc Disease Transmission Advisory Committee

- Part of OPTN patient safety program
- Examine *unexpected* potential donor-derived transmission events mainly consisting of infection or malignancy
 - Categorize as to whether or not they are donor derived
 - Reviews aggregate data on all reported cases to assess the risk of donor disease transmission
 - Inform policy change and improve existing processes
 - Educate transplant community
Potential Donor Derived Transmission Events

Number of PDDTE Reviewed by DTAC* 2005-2017

For an extended description of this chart, please see the description on page 230.
Updated Potential Donor Derived Transmission Events

- Number of cases reviewed and those with proven/probable transmission are relatively stable.

- Community continues to use the reporting system appropriately.

*Many cases reported in 2018 are under ongoing investigation; 26 proven or probable transmissions have been identified as of Jan 15, 2019.

For an extended description of this chart, please see the description on page 231.
Donor-Derived Diseases
DTAC Data

<table>
<thead>
<tr>
<th></th>
<th>2011</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reports made to OPTN</td>
<td>236</td>
<td>438</td>
</tr>
<tr>
<td>Reports with DTAC review</td>
<td>181</td>
<td>276</td>
</tr>
<tr>
<td>Donors transmitting</td>
<td>17%</td>
<td>10.5% (as of Feb 5, 2019, tentative)</td>
</tr>
<tr>
<td>Proven/Probable</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(as of Feb 5, 2019, tentative)
Exposures within past 12 months:

- Intravenous drug use
- Imprisonment for 72 hours
- Sexually transmitted infection
- Sexual activity:
 - MSM
 - Exchange of sexual activity for drugs or money
 - HIV, hepatitis B or hepatitis C infected partner
 - Sexual partner with history of IVDA
- Hemodiluted blood sample
- Hemodialysis (for HCV risk only)
- Children <18 months of age born to mother infected with or at increased risk for HIV, HBV or HCV
- Children breastfed from mother with known HIV infection or at increased risk
More Donors at “Increased Risk”

For an extended description of this chart, please see the description on page 232.
10 Year Review of Probable/Proven DDTE
The Fear and the Reality

•FEAR:
 ➢2005-2015: 219 donors transmitted unexpected diseases to 254 recipients with 71 fatalities
 ➢Numbers of transmission seem large

•REALITY:
 ➢219 / 63,382 (0.34%) deceased donors involved
 ➢254 / 174,388 (0.14%) recipients had DDD
 ➢71 (0.04%) died
DTAC Develops OPTN/UNOS Guidance

Patient safety

- PHS increased risk donor organs (6/2017)
- Identifying risk factors for West Nile Virus in living donors (6/2013)
- HTLV-1 screening and reporting (2/2014)
- Recognizing central nervous system infections (2/2014)
- PHS guideline for reducing HIV, HBV, and HCV (12/2013)
- Recognizing seasonal and geographically endemic infections in living donors (11/2014)
Centers for Diseases Control (CDC)
OPTN Final Rule, §121.4:

- Coordinate possible disease transmission (rabies, HIV, TB, WNV, cancers) with investigations

- CDC and HRSA DoT staff serve as ex-officio members of the DTAC

- HRSA, CDC and FDA:
 - coordinate issues relating to donor screening
 - serve as ex-officio members of the Advisory Committee on Blood Safety and Availability (ACBTSA)

- OPTN Final Rule §121.4: Board of Directors are responsible for developing policies consistent with CDC recommendations
Improving Patient Safety Electronic Reporting in UNet℠

- Improving Patient Safety electronic reporting system (implemented 2006):
 - **Goal**: Use more organs for transplantation and reduce the morbidity and mortality of transplant candidates and living donors.

- Many other pathways exist for data or issues to be reported to the OPTN
Stem Cell and Cord Blood Transplantation: How are adverse events handled?

Adverse Event at Transplant Center

NMDP
Medical officer review AE's and may refer cases for review by the Donor and Patient Safety Monitoring (DPSM) Advisory Group - is it donor or procedure related?

FDA
Quarterly reports

HRSA
Quarterly reports
Contact Information

Marilyn E. Levi, M.D.
Health Resources and Services Administration
Medical Officer, Division of Transplantation
5600 Fishers Lane, Room 8W58
Rockville, MD 20852
Phone: 301-443-3380
Email: mlevi@hrsa.gov
Web: hrsa.gov/about/organization/bureaus/hsb/organdonor.gov
optn.transplant.hrsa.gov
srtr.transplant.hrsa.gov
bloodcell.transplant.hrsa.gov
To learn more about our agency, visit

www.HRSA.gov

Sign up for the HRSA eNews

FOLLOW US:

[/]
Leadership Remarks

ADM Brett Giroir, MD
Assistant Secretary for Health,
U.S. Department of Health and Human Services (HHS)
Leadership Remarks

Robert R. Redfield, MD
Director
Centers for Disease Control and Prevention (CD)
OVERVIEW OF OPTN-ROLES/RESPONSIBILITIES

DAVID KLASSEN, MD
Chief Medical Officer
UNOS
Overview of the Organ Procurement and Transplantation Network (OPTN)

David Klassen, M.D.
OPTN Medical Director
Chief Medical Officer, UNOS
Acknowledgment

This work was supported wholly or in part by Health Resources and Services Administration (HRSA) contract 234-2005-370011C. The content is the responsibility of the authors alone and does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.
Transplantation in the 1970’s and early 1980’s

- No coordinating national system
- Ad hoc or collaborative regional organ sharing
- Inconsistent pattern/model/service areas for organ recover
- Concerns around equity and commercialization
National Organ Transplant Act of 1984

- Organ Procurement & Transplantation Network (OPTN)
 - Private nonprofit entity by contract with HHS
 - Establish membership criteria and medical criteria for allocating organs
 - National policy and system; nationwide coordination
 - Original scope recommended by 1986 task force
 - Original enforcement authority not clearly defined

- Created the modern OPO system
- Created SRTR for data analysis
Key OPTN responsibilities

- Maintain national transplant list
- Facilitate organ distribution, transplantation
- Establish equitable policies and membership standards
- Monitor members for compliance, safety, quality
- Collect/validate/report transplant data
- Promote most/best use of available organs
OPTN is a Membership Organization

As of January 2019

<table>
<thead>
<tr>
<th>Category</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transplant Hospitals</td>
<td>253</td>
</tr>
<tr>
<td>Organ Procurement Orgs.</td>
<td>58</td>
</tr>
<tr>
<td>Histocompatibility Labs</td>
<td>149</td>
</tr>
<tr>
<td>Public Orgs.</td>
<td>6</td>
</tr>
<tr>
<td>Medical/Scientific Orgs.</td>
<td>13</td>
</tr>
<tr>
<td>Individual Members</td>
<td>8</td>
</tr>
</tbody>
</table>
OPTN Governance Structure

Board of Directors

- Executive Committee
- Operating Committees
 - Nominating
 - Finance
 - Network Operations Oversight
 - Policy Oversight
- Policy Development Committees
 - Data Advisory
 - MPSC
 - All Others
Policy Development Committees

18 total policy development committees

- Roughly 18 members on each committee
- Serve in advisory capacity to the Board

Each committee has its own focus

- Some are organ-specific (Liver and Intestine, Thoracic, Kidney, etc.)
- Some are focused on a particular constituency (Pediatric Transplantation, Living Donor, Patient Affairs, etc.)
- Others are task-based (Operations and Safety, Disease Transmission Advisory, etc.)

Provide initial review and analysis of proposed policies, guidance documents, education projects, and other projects

- Develop projects from idea phase through public comment
- Responsible for pre- and post-implementation evaluation as well
OPTN High Level Data

- 36,527 solid organ transplants performed in 2018
 23 percent increase in five years
- 10,721 deceased organ donors in 2018
 25 percent increase in five years
- More than 250,000 transplant recipients alive today
- About 114,000 transplant candidates currently listed nationwide
 Below historic peak in 2014
 150 candidates added each day on average, 18 die waiting
U.S. Transplants Performed by Organ, 2018

- Heart-Lung: 32
- Heart: 21167
- Kidney: 836
- Kidney-Pancreas: 8250
- Liver: 2530
- Intestine: 191
- Other: 11
OPTN: Geographic Structure

- Organ Procurement Organizations (OPOs) or Donor Service Areas (DSAs): 58 defined geographic territories
- Regions: 11 larger areas also have administrative functions
- These geographical boundaries are not designed to optimize allocation, largely political and historical in nature and their use for allocation is currently being revised
Regions
Region 1: Maine, New Hampshire, Massachusetts, Rhode Island, Connecticut
Region 2: Pennsylvania, New Jersey, Washington, DC, Maryland, West Virginia
Region 3: Arkansas, Louisiana, Mississippi, Alabama, Georgia, Florida
Region 4: Oklahoma, Texas
Region 5: California, Nevada, Utah, Arizona, New Mexico
Region 6: Washington, Oregon, Idaho, Montana, Alaska, Hawaii
Region 7: North Dakota, South Dakota, Minnesota, Wisconsin, Illinois
Region 8: Wyoming, Colorado, Nebraska, Kansas, Iowa, Missouri
Region 9: New York, Vermont
Region 10: Michigan, Indiana, Ohio
Region 11: Kentucky, Tennessee, Virginia, North Carolina, South Carolina
Who is UNOS?

- Incorporated in 1984 as a 501(c)3
- 370 Employees
- Headquartered in Richmond, VA
- Manage the OPTN system under cost-share contract with the federal government
- 24-hour call center for organ matching
- Provide research, technology and education to the transplant community

www.unos.org
UNOS Relationship to the Government

- UNOS is a private corporation
- Health Resources and Services Administration (HRSA) is part of HHS within the Federal Government
- HRSA contracts with UNOS to operate the OPTN
OPTN Core Functions

- Running the “match”
- Managing the data
- Quality oversight
- Policy Development
Allocation: organ specific systems

- **Kidney**: utility and equity, recipient health, organ quality
- **Liver**: sickest first, varied sharing by MELD score and zones
- **Heart**: sickest first, geography by 500 mile zones
- **Lung**: Lung allocation score, a balance of pre and post transplant survival, geography by 250 mile zones
OPTN Database

- 24 billion records
- 8 database environments, including a hot site with full fail-over capabilities
- 30,000 database elements
- 8 terabytes of data storage
OPTN Quality Oversight

- Patient Safety
- Disease transmission
- Clinical transplantation outcomes
- Policy compliance
Policy Development

- Broad transplant community input
- Public comment
- Board of Directors approval
OPTN Policy Relating to Transmissible Disease Risk and Consent

- Required consent by recipients to general risks of potential malignancy or infectious disease transmission
- Required consent by recipients for donors with risk identified pre-transplant
- Required consent for recipients of organs from donors with increased risk of disease transmission as specified in the *U.S. Public Health Services (PHS) Guideline*
Discard rate trends - kidney

* Data collection began 10/1/87

For an extended description of this chart, please see the description on page 233.
For an extended description of this chart, please see the description on page 234.
Kidney donor profile index - KDPI

- Age
- Height
- Weight
- Ethnicity
- History of hypertension
- History of diabetes
- Cause of death
- Serum creatinine
- Hepatitis C status
- DCD status
Deceased Organ Donors in the United States by PHS Increased Risk Status

For an extended description of this chart, please see the description on page 235.
PHS IRD Kidney Utilization

Volk et al., Transplantation 2017 101:1666 - 1669
Deceased Donor Kidney Discord Rate
by Recovery Year and PHS Increased Risk Status, 2005-2017

OPTN data UNOS Research 2019
Deceased Donor Kidney Discard Rate
by KDPI Sequence and PHS Increased Risk Status, 2016-2017

OPTN data UNOS Research 2019
Percent Non-Local Shares by KDPI Sequence and PHS Increased Risk Status for Deceased Donor Kidneys Recovered 2016-2017
Median Distance Traveled at Transplant by KDPI Sequence and PHS Increased Risk Status for Deceased Donor Kidneys Recovered 2016-2017
Organ Acceptance Decisions
Risks vs. Benefits of IRD Organs

- Transplantation environment is unique
- Time Pressures: 30 minutes to decide
- Recipient concerns and consent
- Transplant center considerations
Survival Benefit of IRD Kidneys

Bowring et al., Am J Trans 2018 18:617-624
Survival Benefit of IRD Livers

Croome et al. Liver Transplantation 2018 24:497-504

For an extended description of these maps, please see the descriptions on page 236.
Questions?
HISTORICAL BACKGROUND OF PHS ROLE IN PREVENTION OF HIV, HBV, HCV TRANSMISSION THROUGH ORGAN TRANSPLANTATION: FOCUS ON 1994 TO 2013

MATT KUEHNERT, MD
Medical Director
Musculoskeletal Transplant Foundation (MTF)
HISTORICAL BACKGROUND OF PHS ROLE IN PREVENTION OF HIV AND HEPATITIS TRANSMISSION THROUGH ORGAN TRANSPLANTATION

Matthew J. Kuehnert, MD

April 15th 2019
Disclaimer and potential conflicts:

• Employee of MTF Biologics (nonprofit tissue bank)
• Member, American Association of Tissue Banks
• Liaison member of AABB Transfusion Transmitted Diseases committee
• Former CDC employee and commissioned officer of USPHS (retired!)

Opinions and any policy positions conveyed are purely of my own, and do not necessarily reflect the opinions or positions of my employer or any committees or groups of which I am a part.
• IN THE BEGINNING…

• Soon after FDA approved HIV antibody testing and screening was required for blood donors, CDC made recommendations for screening of organ and tissue donors (1985)

• Transmission of HIV through organ transplantation occurred despite antibody testing, including in the setting of
 • Hemodilution (heart/kidney/liver, MMWR 1987)
 • Testing too long before recovery (living donor kidney, Quarto NEJM 1989)
 • Window period (Simonds NEJM 1992)
 • 41 organ/tissue recipients, 7 infected (heart, liver, kidneys [2], fresh-frozen bone [3])

• PHS Workgroup on Organ and Tissue Transplantation formed (1991)
• “CDC Guideline” for Preventing Transmission of HIV through human tissue/organs published (1994)

• Recommended “to exclude potential organ and tissue donors who had risk factors for HIV, unless the transplant center determined that the risk of not performing the transplant outweighed the potential risk of HIV transmission…”

• Update to 1994 guidance (1996) encouraged transplant centers to consider organs from donors with negative antibody testing but HIV risk factors for transplantation, following an informed discussion of risks and benefits

• Also importantly, retained recommendation to test recipients before transplant and at 3, 6, and 12 months after transplant (but not implemented as a requirement)
• Unfortunately, transmissions continued, not only involving HIV but also with another recognized pathogen, hepatitis C virus (HCV)

• Multiple reports of transmission of HCV through organ transplantation, beginning in 1991

• HCV transmission continued despite antibody screening
 • Large cluster of HCV transmission from an infected donor to organ and tissue recipients in 2000-2002 (published 2003, 2005)
Interface between organs and tissues – the need for communication

Figure 1. Transplantation of grafts from a donor with hepatitis C virus (HCV) infection, by month of transplantation and case status (n = 38), United States, 2000–2002.

- **Organs**
 - Corneas

- **Bone-tendon-bone**
 - Tibialis tendon, saphenous vein
 - Tissue processed
 - And released

Dates of transplantation for 2 recipients were unknown. Hepatitis C virus infection was diagnosed in 3 recipients in September, October, and November 2001. These recipients had undergone transplantation in February 2001, October 2000, and April 2001, respectively.

• Nucleic acid testing (NAT) developed to reduce “window period” of antibody (time during which patient is infected with transmissible virus, but test is falsely negative)

• Implemented for blood donor screening in 1999
• Implemented for tissue donor screening in 2005

• By 2007, organ donors still were not being tested using NAT…
In 2007, donor with increased risk (MSM, died after hit by car) transmitted both HIV and HCV to 4 organ transplant recipients.

- Donor tested using antibody screening only
- Recognition of donor derived infection took months
- Two recipients died
- Two other recipients lost graft due to complications
In 2009, HIV transmitted by kidney transplant to a living donor
Donor was screened and tested 79 days before transplant
One year after transplant, donor was diagnosed with HIV; had unprotected sex (MSM) between screening and organ recovery
Recommendation that living donors be screened no more than 7 days before recovery (still with antibody required only)...
OPIOID EPIDEMIC IN THE U.S. IS STILL WORSENING

- Increases in deaths from use of synthetic opioids and heroin reaching exponential scale
- Patients become addicted from prescribed oral medications, then search for other drugs/routes

Source: CDC/NCHS
OPIOID USE AND NEW HCV INFECTIONS ARE INCREASING

HEPATITIS C AND OPIOID INJECTION ROSE DRAMATICALLY IN YOUNGER AMERICANS FROM 2004-2014

- Among people aged 18-29, HCV increased by 400% and admission for opioid injection by 622%
- Among people aged 30-39, HCV increased by 325% and admission for opioid injection by 83%

Source: Centers for Disease Control and Prevention and Substance Abuse and Mental Health Services Administration
HCV Prevalence in Potential Organ Donors

<table>
<thead>
<tr>
<th>Risk Status</th>
<th>Prevalence (%) for Donors in Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Risk</td>
<td>3.45 (CI: 3.10-3.85)</td>
</tr>
<tr>
<td>High Risk</td>
<td>18.20 (CI: 15.74-20.91)</td>
</tr>
<tr>
<td>Missing Risk</td>
<td>12.88 (CI: 10.83-15.08)</td>
</tr>
<tr>
<td>All Potential Donors</td>
<td>5.58 (CI: 5.15-6.06)</td>
</tr>
</tbody>
</table>

Ellingson K et al, AJT, 2011
Comparison of Residual Risk despite lab screening – HIV, Hepatitis B virus (HBV), and Hepatitis C virus (HCV)

<table>
<thead>
<tr>
<th>Marker</th>
<th>Organs* (HR) Serology</th>
<th>Organs* (NR) Serology</th>
<th>Tissues** Serology</th>
<th>Blood*** MP-NAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV</td>
<td>1:11</td>
<td>1:50</td>
<td>1:55</td>
<td>1:1,467</td>
</tr>
<tr>
<td>HBV</td>
<td>---</td>
<td>--</td>
<td>1:34</td>
<td>1:282 /1:357</td>
</tr>
<tr>
<td>HCV</td>
<td>1:1</td>
<td>1:5</td>
<td>1:42</td>
<td>1:1,149</td>
</tr>
</tbody>
</table>

*Ellingson et al., Am.J. Transpl, 2011
**Zou et al., NEJM 351:2004
***Zou, et al., Transfusion 50:1495, 2010

HR = High Risk
NR = Normal Risk
MP-NAT = minipool nucleic acid testing

Slide courtesy of D. Michael Strong
PHS Guideline Development

- “Guidelines for Preventing Transmission of Human Immunodeficiency Virus Through Transplantation of Human Tissue and Organs” published in 1994 by PHS was deemed out of date

- Agreement that PHS guidelines needed revision
 - Association for Organ Procurement Organizations (AOPO), followed by other transplant organizations, sent letters to CDC suggesting guideline revision in 2008

- Intent of revised PHS guideline
 - reducing risk of infectious transmission, while preserving availability of high quality organs
 - providing best available information for transplant teams and their patients to make informed decisions

- Objective process developed for PHS guideline revision and update with input from community experts
How Do We Preserve Availability, Yet Keep Organs Safe As Possible?

• **Donor eligibility (procurement) issues**
 – Risk of transmission
 – Risk of not transplanting an organ with low risk of transmitting an infectious disease
 – Impact of methods to mitigate risks

• **Organ suitability (transplantation) issues**
 – Outcomes of patients who do not receive an at-risk organ, remain on transplant list
 – Outcomes of patients who receive infected organs
 – Patient preference (informed consent)
Important Differences in Focus
(1994 versus 2013 PHS Guideline)

- **1994:** *PHS Guideline for Preventing Transmission of Human Immunodeficiency Virus through Transplantation of Human Tissue and Organs*
 - Organs and tissues; banked breast milk and semen
 - Transmission of HIV only
 - Developed via ad hoc expert input

- **2013:** *PHS Guideline for Reducing HIV, HBV and HCV Infection Transmitted through Organ Transplantation*
 - Organs and blood vessel conduits used for transplantation
 - Transmission of HIV, hepatitis B virus (HBV), and hepatitis C virus (HCV)
 - Developed via evidence-based process and expert input
Important Differences in Focus
(1994 versus 2013 PHS Guideline)

• Expanded to include HBV and HCV
• Term “CDC High Risk donor” changed to “Increased Risk Donor (IRD)”
• Criteria resulting in IRD designation updated to 12 categories
 – time period during which risk behaviors result in IRD designation standardized to 12 months (previously 5 years or 12 months)
• Special recipient informed consent prior to IRD organ transplant (previously CDC high risk donors excluded unless deemed emergency
• Donor and recipient laboratory testing recommendations updated
 – includes HCV NAT for all donors and HIV NAT or HIV p24 antigen for IRD
 – post-transplant HIV, HBV, HCV recipient testing
Evidence-based Process for Revision

- HHS agencies and external experts from transplant community provided input
- On behalf of PHS, CDC led development of draft
- Recommendations based on systematic review of the best available evidence
- Evidence review conducted by:
 - Center for Evidence-based Practice at University of Pennsylvania
 - ECRI Institute/Evidence-based Practice Center
Technical Advisors for Guideline Development

• **Expert Panel**
 - Experts in consent Issues, hepatitis and HIV content, and laboratory medicine;
 - Individuals with background in organ recovery, transplantation, and infectious disease

• **Review Committee**
 - Representatives from organ recovery, transplantation, and public health professional organizations (e.g., Council of State and Territorial Epidemiologists, Association of Organ Procurement Organizations, American Society for Transplantation, American Society of Transplant Surgeons, United Network for Organ Sharing); laboratory test manufacturers; patient advocate; and ad hoc members

• **PHS representatives from CDC, FDA, HHS/OPHS, HRSA, and NIH**
Categories of PHS Guideline Recommendations

- Summary of Recommendations
 - Risk Factors for Recent HIV, HBV or HCV Infection
 - Risk Assessment (Screening) of Living and Deceased Donors
 - Testing of Living and Deceased Donors
 - Informed Consent Discussion with Transplant Candidates
 - Testing of Recipients Pre- and Post-transplant
 - Collection and/or Storage of Donor and Recipient Specimens
 - Tracking and Reporting of HIV, HBV and HCV

- Recommendations for Further Study
Process for Revision of PHS Guideline

- HHS offices and agencies, including CDC, HHS/OPHS, HRSA, FDA, and NIH, reviewed and approved the draft PHS Guideline
- Federal Register Notice
 - 90-day public comment period
- Approximately 100 comments were received and reviewed
- PHS Guideline Revision Work Group convened to review and discuss changes to recommendations
 - Agreed on changes to the guideline
- Expert Panel and Review Committee
 - Provided further input
Issues Raised During Guideline Development

- Revised risk factors identified for HIV, HBV or HCV infection may result in more donors defined as at increased risk, raising fears of reduced acceptance of organs.
- New recommendations for nucleic acid testing (NAT) may result in more false positive tests, raising fears of decreased organ availability.
- New recommendations for pre- and post-transplant testing of transplant recipients may increase costs.
Categories of PHS Guideline Recommendations – initial draft

- Donor Risk Assessment
- Donor Screening
 - Includes Table of risk factors for recent infection of HIV, HBV, HCV
- HBV-Infected Donors and Transplantation
- HCV-Infected Donors and Transplantation
- Recipient Informed Consent
- Recipient Testing
- Donor and Recipient Specimen Collection and Storage
- Tracking and Reporting of HIV, HBV and HCV
Major Changes to PHS Guideline In Response to Public Comment and External Input

- Number of recommendations decreased from 54 to 32
- Sections on HBV- and HCV-infected Donors and Transplantation were deleted
- Donor testing for HIV changed from NAT for all donors to NAT or Ag/Ab for increased risk donors
- Donor testing for HBV changed from NAT for increased risk donors to no recommendation
- Living Donor testing changed from within 7 to within 28 days of organ recovery
- Recipient testing (based on increased donor risk) reduced and changed to broader timeframes after transplant
Major Changes to PHS Guideline In Response to Public Comment and External Input

- Regarding storing blood specimens for future testing (for the possibility of donor-derived disease transmission investigation)
 - Recommendations changed to limit to storing specimens from deceased donors only (no recommendations for living donors or recipients)
 - Recommendations on division of donor specimens into multiple aliquots for storing was deleted
Items to Consider In the Wake of the Finalized PHS Guideline

- **Risk-Benefit Analysis**
 - how many transmissions prevented because they would have received HIV/HBV/HCV infected organs?
 - how many recipients die because of turning down a donor with a false positive test (serology or NAT)?

- **Cost-Benefit Analysis?**
 - what is the cost of serology and NAT?
 - what is the cost of keeping a candidate on the wait list?
 - what is the cost of treating HIV, HBV, HCV?

- **Can safety be preserved while increasing availability?**
 - reduce the 12 month deferral period for risk behaviors?
 - reduce number of risk factors?
 - why not get rid of risk factors altogether, and “trust the NATs”?
3 clusters of HCV transmitted via organ transplantation despite NAT screening, 2011-2013 (one each year), affecting 8/12 recipients

Donor risk factors: 1 heroin overdose (found down w/needles), 1 MVA (found w/needle marks), 1 history IVDU

Detection was attributable to careful post-transplant testing which is not universal practice in recipients of organs from increased risk donors (Theodoropoulos, 2013)

Outcomes poor when donor HCV infection is recent, recipient treatment not given quickly (unrecognized infection or treatment not feasible)
Modeling Risk of undetected HIV and HCV infection if nucleic acid test (NAT) negative

- Antibody tests have window period (before immunologic response to infection)
- NAT closes the window period, but there is still an “eclipse period” of 5-7 days where virus is present, but undetectable
- Risk of undetected infection despite NAT can be modeled
- Recent publication applied model of increased risk organ donors
- Challenge to find “safe subset”

Risk of HIV or HCV infection being present despite negative NAT for different types of behavior, 0 to 20 days between testing and exposure.

Characteristics of Deceased Solid Organ Donors and Screening Results for Hepatitis B, C, and Human Immunodeficiency Viruses — United States, 2010–2017

Winston E. Abraha, MD; Melissa G. Collier, MD; Anne Moorman, MPH; Danae Bixler, MD; Jefferson Jones, MD; Pallavi Annambhotla, PhD; James Bowman, MD; Marilyn E. Levi, MD; John T. Brooks, MD; Sridhar V. Basavaraju, MD

TABLE 2. Characteristics of deceased increased risk donors (IRDs) (N = 12,592) — Organ Procurement and Transplantation Network, United States, 2010–2017

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IRDs (% among all deceased donors)</td>
<td>709 (8.9)</td>
<td>836 (10.3)</td>
<td>966 (11.9)</td>
<td>1,118 (13.4)</td>
<td>1,772 (20.6)</td>
<td>2,016 (22.2)</td>
<td>2,478 (24.9)</td>
<td>2,704 (26.3)</td>
<td>12,592 (17.9)</td>
</tr>
<tr>
<td>HCV RNA by NAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>7 (8.6)</td>
<td>1,488 (85.5)</td>
<td>2,114 (85.3)</td>
<td>2,280 (84.3)</td>
<td>5,956 (85.1)</td>
</tr>
<tr>
<td>Negative</td>
<td>74 (91.4)</td>
<td>1,740 (86.3)</td>
<td>2,477 (>99.9)</td>
<td>2,703 (>99.9)</td>
<td>7,001 (78.1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage of IRDs tested for HCV RNA by NAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>363 (14.7)</td>
<td>423 (15.7)</td>
<td>1,045 (14.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1,488 (85.5)</td>
<td>2,114 (85.3)</td>
<td>2,280 (84.3)</td>
<td>5,956 (85.1)</td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>11,740 (86.3)</td>
<td>2,477 (>99.9)</td>
<td>2,703 (>99.9)</td>
<td>7,001 (78.1)</td>
<td></td>
</tr>
</tbody>
</table>

† Six of the seven HCV RNA-positive donors were anti-HCV positive; one was negative.
§ 243 of 252 (96.4%) HCV RNA-positive donors were anti-HCV positive; nine (3.6%) were negative.
¶ 344 of 363 (94.8%) HCV RNA-positive donors were anti-HCV positive; 19 (5.2%) were negative.
** 397 of 423 (93.9%) HCV RNA-positive donors were anti-HCV positive; 26 (6.1%) were negative.
†† The HIV Organ Policy Equity Act (HOPE Act) of 2013 allows transplantation, under research protocols, of organs from donors infected with HIV into recipients who are also infected with HIV. https://optn.transplant.hrsa.gov/governance/public-comment/changes-to-hope-act-open-variance/.
§§ Five of the six HIV RNA-positive donors were anti-HIV positive; one (16.7%) was negative.

The HIV Organ Policy Equity Act (HOPE Act) of 2013 allows transplantation, under research protocols, of organs from donors infected with HIV into recipients who are also infected with HIV. https://optn.transplant.hrsa.gov/governance/public-comment/changes-to-hope-act-open-variance/.
Organ Safety: Progress and Challenges

What is missing?

- Knowledge of how many transmissions prevented
- Outcomes for management of known infected donor (“expectant transmissions”)
 - HBV and HCV transmission
 - HIV transmission (HOPE Act)
- Need for better informed consent understanding/discussion
- Models to understand what donors are at risk
 - study of donors with true positive laboratory screening tests, correlated with known risk factors as evident in history questionnaire
 - Would require participation of most OPOs
Organ Safety: Progress and Challenges

What are the dangers?

- Risks of eliminating risk factor assessment entirely, and rely on laboratory screening
 - Still have eclipse period
 - Lack of assessment for organ donors may lessen attention to evaluate same donors for tissue eligibility (risk of transmission to organ and tissue recipients)
- There are other pathogens besides HIV/HBV/HCV
 - Human herpesvirus 8
 - Hepatitis E virus
 - Pegivirus 2 (not same as Pegivirus 1/Hep G virus)
Organ Safety: Progress and Challenges

What needs to be done?

- Testing of all recipients receiving transplant from increased risk donors
 - document lack of transmission
 - rapid diagnosis and treatment to improve outcome
- Recommendations for management of known infected donor (“expectant transmissions”)
- Models for risk quantification
 - there are few projects moving forward in this area (e.g., risk-benefit score that can be based on individual data to illustrate risk to both surgeon and recipient)
What is Inform Me?

- **Inform Me** is a decision aid to help patients make informed treatment decisions about whether to accept or to refuse a kidney from an increased risk donor, that:
 - Includes 4 chapters with brief text, videos, and graphics
 - Survey questions after each chapter
 - Focuses on kidneys, but also applies to other organs

Start Inform Me Now

Full Version

Start Inform Me Now

Demo for Providers

https://informme.cbits.northwestern.edu/system/
Improving Organ Transplant Availability by Evaluating Risk of Infection Transmission

Dec 19, 2016 | Atlanta, GA

The demand and the average time on the waiting lists for organ transplants are growing, while the supply of organs remains comparatively limited.

According to UNOS, the United Network for Organ Sharing, currently more than 121,480 people across the United States are waiting for an organ, while 30,970 people received transplants in 2015. In the same year, 6,648 people died on the transplant waitlist, while 6,702 were removed from the list after waiting so long that they became too sick to undergo transplant surgery.

A possible resolution to this problem is to increase the availability of organs. In the past, organs with a small risk of infection were often not chosen for transplant. After several transmissions of infectious diseases that occurred through transplants where these infections (or the risk) were not detected ahead of time, use of many more organs were discouraged because of problems with understanding the risk.

A collaborative project between ISyE and the Centers for Disease Control and Prevention (CDC) addresses this issue of risk estimation and perception, with the goal of assessing the risk of infection in an organ donor, and evaluating the options of receiving an increased-risk donor (IRD) organ versus staying on the waitlist for a patient. Ultimately, the goals are to reduce deaths due to organ transplants transmitting infections, boost the availability of organs without infection for transplant, and reduce the number of patients who die while on the waiting list.

The collaboration started with a Senior Design project, initially focusing on infectious encephalitis in liver transplants.
The Bottom Line

- Risk of infectious disease transmission is small, but important for there to be trust in the system, including for organ recipients.
- Risks are poorly understood clinically; no guideline or mandated testing will fix this gap.
- Informed consent and assessment tools at the bedside level are key, unless you’re an expert yourself.
- Real life story illustration....
Transplant surgeon Dr. Robert Montgomery, a long-time advocate for the use of organs from high-risk donors, has now received a hepatitis C–positive heart transplant.

PHOTO: NYU LANGONE STAFF

Robert Montgomery, MD, professor of surgery and director of NYU Langone Transplant Institute, has advocated for his patients to accept organs from high-risk donors for years. In September 2018, he had to make that decision for himself, as a heart transplant recipient.

“I actually hired the people that did my transplant, not knowing they would be saving my life at some point,” says Dr. Montgomery. Five days after entering the hospital, he had an offer of a hepatitis C-positive heart. Nader Moazami, MD, professor of cardiothoracic surgery and surgical director of heart transplantation at NYU Langone, performed Dr. Montgomery’s transplant.

The Transplant Institute now successfully transplants hepatitis C-positive organs to hepatitis C-negative recipients in their heart, lung, kidney, and liver programs. Patients are immediately treated for hepatitis C with medications, which are more than 95 percent effective. Dr. Montgomery tested positive for the disease five days after the surgery. He took oral medication every day for eight weeks, and the infection cleared. He returned to work part time two weeks after the surgery, and was back to full time two months later.
QUESTIONS?
HISTORICAL PERSPECTIVE ON THE ESTABLISHMENT OF DTAC

MIKE ISON, MD
Professor, Divisions of Infectious Diseases and Organ Transplantation
Northwestern University Feinberg School of Medicine
Medical Director, Transplant & Immunocompromised Host Infectious Diseases Service
Northwestern University Comprehensive Transplant Center
Historical Perspective on the Establishment of DTAC

Michael G. Ison, MD MS FIDSA FAST
Professor, Division of Infectious Diseases & Organ Transplantation
Transplant & Immunocompromised Host Infectious Diseases Service
Northwestern University Feinberg School of Medicine

Advisory Committee on Blood and Tissue Safety and Availability
Washington, DC – 15 April 2019
Disclosures

• Research Support°
 o AiCuris, Chimerix, Emergent BioScience, Genentech/Roche, Gilead, Janssen, Shire

• Paid Consultation
 o Celltrion, Genentech/Roche, Janssen, Shionogi, Viracor Eurofins, VirBio

• Unpaid Consultation
 o GlaxoSmithKline, Romark, Vertex

• Data & Safety Monitoring Board Participation
 o Janssen, Vitaeris

As of 3/12/19; ° Paid to Northwestern University.
Donor-Derived Infections: *Definitions*

- Any infection of a recipient that results from an infection present in the donor and transmitted by the donated organ

Types:

- **Expected:**
 - Common everyday occurrence
 - HBV, HCV, EBV, CMV, Toxo

- **Unexpected**
 - True incidence is unknown: Lower but not absent for living donors
 - Best estimate: ~0.15%
 - LCMV, Rabies, malaria
 - Bacterial, fungal pathogens

The Early Days: *Pre-DTAC*
Donor-Derived Disease Transmissions: Setting the Stage

- 54 yo WM with HBV/HCV/HCC
- Day 5: Fever to 102.4, mild frontal HA since time of transplant
- IS: ATG, Tacrolimus, Azathioprine
- Abx: Pip-Tazo, HBIg, 3TC, Famciclovir, TMP-SMX
- SH: Suburbs, Iron worker
- PE: Non-focal except for a tender RUE peripheral IV catheter
Donor-Derived Disease Transmissions: Setting the Stage

• Continued with fever, LFTs increased

• Seizure (? Hypoxemic)

• Progressive “sepsis” with elevated LFTs and renal dysfunction

• Call from another Transplant ID doc
Donor-Derived Disease Transmissions: Setting the Stage

Donor-Derived Diseases: Regulations

• OPTN Policy 4.6 (Screening of Donors)
 - Donor testing must use a FDA licensed, approved or cleared serologic test if commercially available
 - In the event that such screening tests are not commercially available prior to transplant, then a FDA approved diagnostic test is permissible to assess the donor
 - The Host OPO shall obtain a history to determine if the donor is “high risk”
 - Known conditions that may be transmitted by the donor organ must be communicated to the transplant centers
 - Exceptions
 - Organs from donors with a positive screening test or confirmed medical conditions that may be transmittable, with the exception of HIV, may be transplanted at the discretion of the transplanting program with the informed consent of the recipient

Background: OPTN Policy 4.7

• ‘When a transplant program is informed that an organ recipient at that program is confirmed positive for or has died from a transmissible disease or medical condition for which there is substantial concern that it could be from donor origin, the transplant program must notify by phone and provide available documentation, as soon as possible and not to exceed one complete working day, to the procuring OPO.’

• OPO shall then:
 o Communicate the results to all recipient Transplant Centers & Tissue Banks
 o Manage the investigation
 o Notify the OPTN as soon as possible
 o Submit a final written report to the OPTN within 45 days

Disease Transmission Advisory Group

- Created in October 16, 2006
 - A working group of the Operations Committee
 - Initial Members
 - ID: Jay Fishman, Emily Blumberg, Michael Ison
 - Malignancy: Mike Nalesnik
 - Ops Members: Rick Hasz, Kevin Myer, Myron Kauffman
 - External Members: Matt Kuehnert (CDC), Elizabeth Ortiz-Rios (HRSA)

- First Report Reviewed by Group in October 31, 2006
 - First report was of probable transmission of leukemia
 - Truly the wild west: No plan on how to handle the case, no guidelines
 - Goal per Jay “our real job will be to define the role of DTAG at UNOS over time”
 - Generally started as discussion among the members
 - Quickly added Amit Tevar to help with malignancy cases
Disease Transmission Advisory Group

• First Leadership Transition: August 2007
 o Michael Ison became the second DTAG chair

• First case of a reportable disease emerged August 2007: Legionella
 o A lot of confusion about roles of various partners
 o Initially reported through health department and independent investigation initiated with CDC leadership
 o Quickly established need for DTAG involvement in case
 ▪ Matt quickly invited DTAG chair to become involved in all calls related to the case

• Initial work all conducted manually
 o Email discussion
 o Paper/simple electronic management system
DTAG Membership by end of 2007

<table>
<thead>
<tr>
<th>Name</th>
<th>Specialty</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael Ison, MD MS (Chair)</td>
<td>Transplant ID</td>
<td>Northwestern</td>
</tr>
<tr>
<td>Michael Nalesnik, MD (Vice Chair)</td>
<td>Transplant Path</td>
<td>U. Pittsburgh</td>
</tr>
<tr>
<td>Emily Blumberg, MD</td>
<td>Transplant ID</td>
<td>U. Pennsylvania</td>
</tr>
<tr>
<td>Kevin Carney, RN/CCTC</td>
<td>Transplant Coordinator</td>
<td>U. Pennsylvania</td>
</tr>
<tr>
<td>James Cutler, CPTC</td>
<td>OPO</td>
<td>SW Transplant Alliance</td>
</tr>
<tr>
<td>Michael DiMaio, MD</td>
<td>CT Surgery</td>
<td>UT Southwestern</td>
</tr>
<tr>
<td>Rick Hasz, MFS</td>
<td>OPO</td>
<td>Gift of Life</td>
</tr>
<tr>
<td>Lewis Teperman, MD</td>
<td>Transplant Surgery</td>
<td>NYU</td>
</tr>
<tr>
<td>Amit Tevar, MD</td>
<td>Transplant Oncology</td>
<td>U. Cincinnati</td>
</tr>
<tr>
<td>Matt Kuehnert, MD</td>
<td>Ex officio</td>
<td>CDC</td>
</tr>
<tr>
<td>James Burdick, MD</td>
<td>Ex officio</td>
<td>HRSA/DoT</td>
</tr>
<tr>
<td>Chris McLaughlin</td>
<td>Ex officio</td>
<td>HRSA/DoT</td>
</tr>
<tr>
<td>Elizabeth Ortiz-Rios, MD</td>
<td>Ex officio</td>
<td>HRSA/DoT</td>
</tr>
<tr>
<td>Joyce Hager, MPH</td>
<td>Patient Safety Manager</td>
<td>UNOS</td>
</tr>
<tr>
<td>Vicki McEwen</td>
<td>Patient Safety Coordinator</td>
<td>UNOS</td>
</tr>
<tr>
<td>Gloria Taylor, MA RN</td>
<td>Standards & Process</td>
<td>UNOS</td>
</tr>
</tbody>
</table>
DTAG: Quick Growth
Focus in Increased Risk Donors: The Start

Index Patient: 30 yo M with nephrotic syndrome
- HIV, HCV antibody negative in 2003 for listing for 2nd transplant
- Highly sensitized, consented for IRD kidney: November 2006

- 3 months Post-Transplant
 - Elevated LFTs, negative hepatitis serology
 - Liver biopsy: inflammation, stage II/III fibrosis -> HCV RNA (>10M IU/mL)

- 10 months Post-Transplant
 - Kidney biopsy: Banff 1A ACR, HIVAN (Proliferative GN)
 - HIV Ab+, HIV Viral Load 520c/mL and CD4 Count 16 cells/µL
 - Referred to ID for evaluation and management

- 11 months Post-Transplant
 - Presented to hospital after syncope in train station
 - Significant diarrhea
 - Alerted OPO, UNOS, CDC of transmission

Focus in Increased Risk Donors: *The Start*

- Donor
 - Negative serology for HIV & HCV
 - Appropriately labeled as “high risk” by PHS guidelines
 - Subsequent testing of post-transfusion serum was + for HIV and HCV by PCR

Response to HIV-HCV Transmission Event

- Community quickly responded with processes to improve consent and monitoring
- OPTN Developed Revised Policy
 - Requirement of special informed consent
 - Subsequently requirement to perform testing: Still not optimal
- Testing: Recognition of potential value of NAT
 - Increased NAT capacity at OPOs around the US
 - Debate about optimal role of NAT for donor screening
- Calls for updating PHS Definitions of Increased Risk Donors
- Enthusiasm and interest in Disease Transmission Data
Formation of DTAC

• In response to HIV/HCV Transmission event, enhanced focus on DTAG and work it was doing
• Recognition that there was a need to develop and invest in the process
 o Significant effort and time (esp after hours; 22-33 hours) utilized for cases
• DTAG became the Ad Hoc Disease Transmission Advisory Committee
 o Remove requirement for regional representation
 o Independent from Operations (although kept members for linkage)
 o Allowed flexible membership to reflect content knowledge
 o Had to remain a “closed” committee because of medical peer review
 o Commitment to increase support for the Committee
 ▪ Increased number of and support for coordinators
 ▪ Develop components of Patient Safety portal
 ▪ Enhance Sharepoint utility
Formation of DTAC

• Initial charge
 o Determine current understanding of the risk of donor disease transmission through solid organ transplantation [Patient Safety]
 o Evaluate current status of screening and diagnostic testing for donor disease transmission, and recommend appropriate evidenced-based OPTN policy concerning donor testing and screening for transmissible disease [Patient Safety]
 o Develop plans to address risk of donor disease transmission through collaborative consensus conference (AST, ASTS, AOPO, SRTR, etc.) [Patient Safety]
 o Collaborate with other Committees
 ▪ Operations: Work with DTAC to address safety of donor organ supply
 ▪ Organ Availability Committee: Work with Operations Committee, DTAC and OPO Committee to identify and address issues pertaining to safety of the donor organ supply
 ▪ Organ Procurement Committee: Work with Operations Committee, DTAC, and Organ Availability Committee to identify and address issues pertaining to safety of the donor organ supply
DTAG: Accomplishments

• Formalization of Group Structure and Function
 o Draft Charter: pending Operations approval
 o Monthly Calls, Annual Meeting
 o Formal numbering system

• Partnering with Other Experts
 o American Organ Procurement Organization
 ▪ Standardized donor questionnaire
 ▪ Collecting data on NAT as implemented regionally
 o Israel Penn International Transplant Tumor Registry
 o Living Donor Committee
 o Centers for Disease Control & Prevention
 ▪ Enhancing and simplifying the flow of information to and from CDC to help inform DTAG decisions
Establishing a US Organ Vigilance System: **DTAC**

- Organ Procurement & Transplant Network Policy Creates the Reporting Requirement
 - OPTN Policy 15.4: Requires reporting of any suspected or proven disease transmission to the OPO, all transplant centers and the OPTN within 24 hours of first becoming aware of the potential transmission
 - An Electronic Reporting Portal Created: *Patient Safety System*
 - Creation of Review Committee of Experts: *Disease Transmission Advisory Committee*
 - Developed a case review process
 - Patient Safety Staff prepare summary of event with identifiers redacted
 - Key materials are uploaded to SharePoint Server and shared with members
 - E-mail based discussion
 - Day 45 Follow-up Reports submitted
 - Handling of Special Cases: CDC, Required Calls and MPSC
 - Monthly conference calls
 - Bi-Annual Meeting
- Establish an internationally agreed upon definition of imputibility

Establishing a US Organ Vigilance System: DTAC

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proven</td>
<td>Donor plus one recipient</td>
</tr>
<tr>
<td>Probable</td>
<td>One or more recipients with suggestive data</td>
</tr>
<tr>
<td>Possible</td>
<td>Evidence to suggest but not prove transmission</td>
</tr>
<tr>
<td>Intervention without Documented Transmission (IWDT)</td>
<td>No transmission because antimicrobials were used (or for RCC, affected KI discarded or tumor excised)</td>
</tr>
<tr>
<td>Unlikely</td>
<td>Limited evidence to suggest transmission could have occurred, but no transmission documented</td>
</tr>
<tr>
<td>Excluded</td>
<td>No evidence of transmission</td>
</tr>
</tbody>
</table>

Garzoni C, Ison MG. *Transplantation*. 2011; 92: 1297-1300
Potential Donor Derived Transmission Events (PDDTE)

*Additional reports are submitted, but not reviewed by full DTAC (duplicates, expected transmissions and other unnecessary reporting, etc).

For an extended description of this chart, please see the description on page 237.
Organ Vigilance Systems Develop Real-Time Guidelines
Guidance: HTLV Testing in the US

• Setting: 2009, manufacturers of HTLV testing in the US announced they were discontinuing production of assays
 o OPTN Policy required HTLV testing
 o Few HTLV positive organs were being used
 o Options: Research only reagents, develop a new assay, allow retrospective testing or drop requirement for testing

• OPTN/DTAC Develop a plan for addressing
 o Collect real data on organ usage
 o Collect data on positivity (only available on patients with organs used)
 o Provide guidance to the community on next steps

Guidance: *HTLV Testing in the US*

- 12,000 – 15,000 DONORS/YEAR
- 125-156 POSITIVE SCREENING TESTS
- 4-6 CONFIRMATORY POSITIVE
- 34-42 Indeterminate confirmation

Estimated that 83-114 donors lost per year from false positive screen or HTLV-2 infection.

Guidance: *HTLV Testing in the US*

Outcome

- OPTN Policy changed to no longer require HTLV testing
- Few OPOs doing HTLV testing
- Feedback from community: Appreciated the education and wished they had used more HTLV+ organs in the past
- No reports of HTLV-associated disease transmission in the 10 years since removing the requirement for testing

DTAC: Challenges & Opportunities

• Interface between OPTN/UNOS DTAC and Public Health
 o Multiple pinch points and conflicts led to the need for formal agreements
 o HRSA coordinated a series of calls and meetings to develop ground rules
 o Clear delineation of roles of Public Health and DTAC
 o It is in everyones best interest to have significant data sharing in collaborative cases

• AATB: Uniform Donor Health Questionnaire

• AOPO: Understanding donor screening used by OPOs in the US

• Specific Donor Risk Issues
 o Chagas, Dengue, Endemic Mycoses, Hemodilution
 o Vessels, NAT
Revision of PHS Increased Risk Guidelines

• DTAC was invited to provide advice and contributed to knowledge for the 2013 revision of PHS Increased Risk Guidelines
 o Work on issues related to vessels, living donors, collection of data not currently on forms
 o Survey of serologic and NAT use at OPOs nationally
 o Co-Organized the “OPTN/UNOS DTAC and AST IDCoP Infectious Risk Ad Hoc Committee”
 ▪ Identify banks of serum from “high risk” donors who were screened but not accepted, to determine frequency of sero-negative and NAT positive for the agents of interest
 ▪ Could also look at data in which high risk patients were turned down for by some centers but accepted by others or in which some organs were accepted and others were rejected – what is the rate of transmission.
 ▪ Review of current data from those conducting NAT: How many tests are done and how many are serology negative, NAT positive; if possible, would stratify by 1994 PHS Guideline High Risk positive or negative and optimally also by high risk criteria.
 ▪ Review the current data on high risk donors and the rate of transmission of disease (mostly focus on limitation of post-transplant testing).
 ▪ Review Available literature

• Implementation of revised guidelines into OPTN policy
DTAC: Major Accomplishments 2005-2010

• Established the epidemiology of donor-derived disease transmission
• Increased organ availability
 o HTLV review and policy change
 o Malignancy Donor Guidance
• Provided guidance on key issues
 o H1N1, Dengue, West Nile Virus
 o Vessel policy proposal
 o Donor screening, UDHQ
• Education
 o 2 Publications (American Journal of Transplantation)
 o 8 Meeting Abstracts
 o 31 Meeting presentations
• Development of collaborations with key transplant players
• Established the importance of ID expertise within UNOS
 o But please don’t forget about malignancies!
The Biggest Accomplishment of DTAC

• DTAC is the Gold Standard for Organ Vigilance Systems in the World
 o Led to EU law requiring all member states to develop organ vigilance systems
 o Led to establishment of the Australian vigilance system
• New programs consistently want to learn from OPTN/UNOS DTAC
• Our presentations and publications generated enthusiasm and demonstrated value for organ vigilance
• Open and free sharing of our vigilance data is essential
 o Need to ensure that key lessons learned continue to be shared
 o Review limits placed on communication to ensure they are needed
 o Need a public forum for presenting up-to-date data generated from DTAC
The Initial Work Took an Army

• To the entire committee
 o Michael Nalesnik, Vice-Chair
 o Rick Hasz – the true partner in getting this all started with Operations Committee
 o 4,250 e-mails (~1000/year)

• To our coordinators
 o Joyce Hager
 o Vipra Ghimire
 o Shandie Covington
 o Kimberly Taylor
 o Kimberly Parker
 o Susan Tlusty

• To our research support: Sarah Taranto
Questions?
Michael G. Ison, MD MS
312-695-4186
mgison@northwestern.edu
FEEDBACK FROM TRANSPLANT COMMUNITY: NEED FOR GUIDELINE RECOMMENDATION REVISION; DATA GATHERING AND ANALYSES TO INFORM CURRENT REVISION EFFORTS; ASPECTS OF RECS AMENABLE TO REVISION

SRIDHAR BASAVARAJU, MD
Acting Director, Office of Blood, Organ, and Other Tissue Safety
Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases
Centers for Disease Control and Prevention
The 2013 PHS Guideline to Reduce the Risk of Unintended HIV/HBV/HCV Transmission Through Organ Transplantation: Opportunities for Improvement

Sridhar V. Basavaraju, MD
CDR-U.S. Public Health Service
Director - CDC Office of Blood, Organ, and Other Tissue Safety
Division of Healthcare Quality Promotion
National Center for Emerging and Zoonotic Infectious Diseases
CDC
Background
Summary of 2013 PHS Guideline recommendations: deceased donors

- Guideline goal is to reduce the risk of unexpected HIV, HBV, or HCV transmission through transplantation
- All donors tested by HIV, HBV, HCV serology and HCV NAT
- Increased risk donors (IRD) tested by either HIV NAT or p24 antigen
 - No recommendation for HBV NAT
- Donors classified as IRD if having ≥ 1 of 12 medical/social risk factors for undetected HIV, HBV, or HCV infection or unknown medical/social history or hemodiluted blood sample used for testing
- No donor exclusion is recommended
 - Specific informed consent for recipients of IRD organs
 - Post-transplant testing of IRD organ recipients for HIV, HBV, and HCV
Community feedback about 2013 PHS Guideline- since implementation in 2014

- Too many donors are being designated as IRD
- Organs are underutilized from IRD
- Risk designation of donors is not necessary because all donors screened with NAT and effective treatment available
- Given universal adoption of NAT, evidence for 12 month timeframe is lacking
 - “Increased risk” nomenclature does not accurately portray risk of morbidity and mortality of accepting IRD organs
- Not all 12 + 2 IRD criteria increase the risk of transmission of viral bloodborne pathogens
- Request for data from CDC on HBV or HCV transmissions and outcomes
PHS response to address community feedback:

- Four analytic projects:
 - Donor characteristics and screening test results of IRD compared to standard risk donors
 - CDC-led outbreak investigations (2014-2017) of HBV/HCV transmission through transplantation
 - Impact of IRD designation on organ utilization
 - Mathematical model of risk of undetected HIV/HBV/HCV infection among IRD from time of risk behavior to negative NAT

- Ongoing engagement with stakeholders
- Present findings at Advisory Committee on Blood and Tissue Safety and Availability in April 2019
- Draft revised recommendations and post in federal registry for public comment during 2019
- Publish revised recommendation during 2020
Analytic Project 1:

Deceased organ donors in the United States by increased risk status*
2010–2017 (N = 70,414)

Data source: Organ Procurement and Transplantation Network
*Increased risk for HIV, Hepatitis B Virus, or Hepatitis C Virus

For an extended description of this chart, please see the description on page 238.
Number of deceased organ donors who died from drug intoxication and those dying from drug intoxication + history of intravenous drug use United States, 2010–2017

Donors with Drug Intoxication Reported as Mechanism of Death
Donors with Drug Intoxication Reported as Mechanism of Death and History of IDU

Data source: Organ Procurement and Transplantation Network

For an extended description of this chart, please see the description on page 239.
Number and percent of donors with a reactive Hepatitis C Virus nucleic acid test result by increased risk status* — United States, 2014–2017

*Increased risk for HIV, Hepatitis B Virus, or Hepatitis C Virus;
% of donors tested for HCV by NAT: 2014: 5%, 2015:86%, 2016:100%, 2017:100%
Data source: Organ Procurement and Transplantation Network

For an extended description of this chart, please see the description on page 240.
As a result of opioid epidemic, number of IRD increasing.

In 2017, IRD had ~16 times the prevalence of detectable hepatitis C virus compared to standard risk donors.

\[
\frac{HCV \text{ NAT Prevalance Among IRD}}{HCV \text{ NAT Prevalance Among SRD}} = \sim 16
\]
Analytic Project 2:

Description of all CDC-led outbreak investigations (2014-2017) of HBV/HCV transmission through transplantation

HCV transplant-associated transmissions — United States, 2014–2017

9 investigations -
9 increased risk donors
 5 were IVDU
 2 had no medical or social history available
 1 had been in jail
 1 had sex with a person known or suspected to have HCV

Total number of recipients: 31

Total number infected: 20

HBV transplant-associated transmissions — United States, 2014–2017

7 investigations
7 increased risk donors
 6 were IVDU
 1 with history of jail

Total number of recipients: 15

Total number infected: 7
Outcomes within 3-18 months after transplantation among organ recipients with transplant-associated HBV — United States, 2014–2017

<table>
<thead>
<tr>
<th>Organ Transplanted</th>
<th>Total Recipients</th>
<th>HBV NAT (+) Recipients</th>
<th>HBV NAT (+) Recipients Who Survived</th>
<th>Outcomes Among Survivors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Graft Functioning</td>
</tr>
<tr>
<td>Bilateral Lungs</td>
<td>1</td>
<td>0</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Kidney</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Liver</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Pancreas</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>TOTAL (%)</td>
<td>15</td>
<td>7 (47)</td>
<td>6 (86)</td>
<td>6 (100)</td>
</tr>
</tbody>
</table>
Outcomes within 3-18 months after transplantation among organ recipients with transplant-associated HCV — United States, 2014–2017

<table>
<thead>
<tr>
<th>Organ Transplanted</th>
<th>Total Recipients</th>
<th>HCV NAT (+) Recipients</th>
<th>HCV NAT (+) Recipients Who Survived</th>
<th>Outcomes Among Survivors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Graft functioning</td>
</tr>
<tr>
<td>Heart</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Kidney</td>
<td>16</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Kidney/pancreas</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Liver</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Lung</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL (%)</td>
<td>31</td>
<td>20 (65)</td>
<td>19 (95)</td>
<td>18 (95)</td>
</tr>
</tbody>
</table>
Transmission of HBV and HCV from test-negative donors occurs
- All donors met criteria as IRD
- Post-transplant screening of IRD organ recipients led to early identification and treatment
- Risk of death and graft failure was likely reduced
Analytic Project 3:

Impact of public health service increased risk deceased donor designation on organ utilization – analyzing data from the Organ Procurement and Transplantation Network

<table>
<thead>
<tr>
<th>Recipient age group</th>
<th>Organ</th>
<th>Number of organs</th>
<th>Utilization rate</th>
<th>P-value*</th>
<th>Organs underutilized, per year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adults</td>
<td>Heart</td>
<td>31,216</td>
<td>31.84%</td>
<td>0.4548</td>
<td>7.6</td>
</tr>
<tr>
<td></td>
<td>Kidney</td>
<td>64,299</td>
<td>76.58%</td>
<td><.0001</td>
<td>148.3</td>
</tr>
<tr>
<td></td>
<td>Liver</td>
<td>31,531</td>
<td>74.58%</td>
<td>0.2199</td>
<td>10.9</td>
</tr>
<tr>
<td></td>
<td>Lung</td>
<td>31,686</td>
<td>25.14%</td>
<td>0.0024</td>
<td>33.5</td>
</tr>
<tr>
<td>Pediatrics</td>
<td>Heart</td>
<td>3,848</td>
<td>46.16%</td>
<td><.0001</td>
<td>11.7</td>
</tr>
<tr>
<td></td>
<td>Kidney</td>
<td>2,837</td>
<td>69.60%</td>
<td>0.0744</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>Liver</td>
<td>3,069</td>
<td>64.31%</td>
<td>0.4041</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>Lung</td>
<td>4,042</td>
<td>4.51%</td>
<td>0.3311</td>
<td>1.2</td>
</tr>
</tbody>
</table>
Boxplots of distribution of facility-level proportion IRD organ transplants
Tabular summary of results

<table>
<thead>
<tr>
<th>Organ</th>
<th>Adult</th>
<th>Pediatric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart</td>
<td>No difference in utilization due to IRD, after excluding HBV/HCV positive donors*</td>
<td>Significant difference in utilization between IRD and non-IRD (11.7 hearts per year) *</td>
</tr>
<tr>
<td>Kidney</td>
<td>Significant difference in utilization between IRD and non-IRD (148.3 kidneys per year) Under-utilization driven by a subset (41/208) of facilities under-utilization □</td>
<td>No difference in utilization due to IRD, after excluding HBV/HCV positive donors*</td>
</tr>
<tr>
<td>Liver</td>
<td>No difference in utilization due to IRD *</td>
<td>No difference in utilization due to IRD *</td>
</tr>
<tr>
<td>Lung</td>
<td>Significant difference in utilization between IRD and non-IRD (33.5 lungs per year). More generalized under-utilization, nationally ◆</td>
<td>No difference in utilization due to IRD, after excluding HBV/HCV positive donors*</td>
</tr>
</tbody>
</table>
• No difference between risk-adjusted utilization rates of IRD and non-IRD organs for most organ types

• IRD is associated with underutilization of
 • Adult kidneys (148/year)
 • Pediatric hearts (12/year)
 • Adult lungs (34/year)

• Subset of facilities contribute to underutilization of adult kidneys
Analytic Project 4:

Model to describe risk of undetected HIV, HBV, and HCV infection among Public Health Service increased risk donors with negative NAT result

Risk of undetected HIV infection among PHS IRD with negative NAT by risk behavior and time of NAT from most recent potential exposure

Risk of undetected HIV infection among MSM

Risk of undetected HIV infection among PWID

Risk of undetected HIV infection among MSM who inject drugs

Risk of undetected HIV infection among MSM who have unprotected sex with HIV-positive partner

Blue line: Mean risk
Green dashed line: Upper 95% CI
Blue dashed line: Lower 95% CI
Red line: 1/1,000,000 risk

PHS IRD: Public Health Service
increased risk donor
NAT: Nucleic acid test
MSM: Men who have sex with men
PWID: People who inject drugs
Risk of undetected HBV infection among PHS IRD with negative NAT by risk behavior and time of NAT from most recent potential exposure

Risk of undetected HBV infection among MSM

Risk of undetected HBV infection among MSM who inject drugs

Risk of undetected HBV infection among PWID

Risk of undetected HBV infection among donors with 3x the incidence of HBV among MSM

Blue line: Mean risk
Green dashed line: Upper 95% CI
Blue dashed line: Lower 95% CI
Red line: 1/1,000,000 risk

PHS IRD: Public Health Service increased risk donor
NAT: Nucleic acid test
MSM: Men who have sex with men
PWID: People who inject drugs
Risk of undetected HCV infection among PHS IRD with negative NAT by risk behavior and time of NAT from most recent potential exposure

Risk of undetected HCV infection among MSM

Risk of undetected HCV infection among PWID

Risk of undetected HCV infection among MSM who inject drugs

Risk of undetected HCV infection among PWID with an HCV-positive injecting partner

Blue line: Mean risk
Green dashed line: Upper 95% CI
Blue dashed line: Lower 95% CI
Red line: 1/1,000,000 risk

PHS IRD: Public Health Service
Increased risk donor
NAT: Nucleic acid test
MSM: Men who have sex with men
PWID: People who inject drugs
Risk of undetected HIV, HBV, and HCV infection among persons with negative NAT infected with one virion from time of infection

Risk of undetected HIV infection

Risk of undetected HBV infection

Risk of undetected HCV infection

Blue line: Mean risk
Red line: 1/1,000,000 risk

NAT: Nucleic acid test
For IRD, the risk of undetected infection is < 1/1,000,000 for
 - HIV, HCV: > 2 weeks after most recent exposure
 - HBV: > 5 weeks after most recent exposure

Even if donor infected with one virion (highly unlikely scenario), the risk of undetected infection is < 1/1,000,000 for
 - HIV, HCV: > 3 weeks after infection
 - HBV: > 10 weeks after infection

Period during which reported donor risk behaviors result in IRD designation can be safely shortened
Evaluation of criteria resulting in deceased donor IRD designation
Increased risk donor (IRD) designation criteria

- **Medical/social criteria resulting in IRD designation**
 - Sex with a person known or suspected to have HIV, HBV, or HCV infections
 - Men who have had sex with men (MSM)
 - Women who have had sex with a man with a history of MSM behavior
 - Sex in exchange for money or drugs
 - Sex with a person who had sex in exchange for money or drugs
 - Sex with a person that has injected drugs by IV, IM, or subQ route
 - Injected drugs by IV, IM, or subQ route for nonmedical reasons
 - Incarceration for > 72 hours
 - Newly diagnosed or have been treated for syphilis, gonorrhea, Chlamydia, or genital ulcers
 - Child (age ≤18 months) born to a mother known to be infected with, or at increased risk for HIV, HBV, or HCV
 - Child breastfed within the preceding 12 months by mother known to be infected with, or at increased risk for HIV infection.
 - Hemodialysis (only increased risk for HCV)

- **Other criteria resulting in IRD designation**
 - Unknown medical/social history
 - Hemodiluted blood specimen used for infectious disease testing
Transplant-transmissions from deceased IRD: 2008-2018*

<table>
<thead>
<tr>
<th>Criteria resulting in IRD designation</th>
<th>HCV</th>
<th>HBV</th>
<th>HIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex with a person known or suspected to have HIV, HBV, or HCV infections</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MSM</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sex with MSM (women)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sex in exchange for money or drugs</td>
<td>4</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Sex with a person who had sex in exchange for money or drugs</td>
<td>2</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Sex with PWID</td>
<td>4</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>PWID</td>
<td>19</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>Incarceration</td>
<td>10</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>Newly diagnosed/treated STD</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Child (age ≤18 months) born to a mother known/suspected for HIV, HBV or HCV</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Breastfed child by mother known/suspected for HIV, HBV, or HCV</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hemodialysis</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Other Criteria resulting in IRD designation

<table>
<thead>
<tr>
<th>Unknown medical/social history</th>
<th>HCV</th>
<th>HBV</th>
<th>HIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemodiluted blood specimen used for infectious disease testing</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*Includes all DTAC and CDC led investigations with Adjudication of Proven or Probable

Note: Ongoing investigations on three 2018 cases
<table>
<thead>
<tr>
<th>Transplant Transmissions (Adjudicated as Proven/Probable)</th>
<th>HCV</th>
<th>HBV</th>
<th>HIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criteria resulting in IRD designation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex with a person known or suspected to have HIV, HBV, or HCV infections</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MSM</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sex with MSM (women)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sex in exchange for money or drugs</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sex with a person who had sex in exchange for money or drugs</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sex with PWID</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PWID</td>
<td>8</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Incarceration</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Newly diagnosed/treated STD</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Child (age ≤18 months) born to a mother known/suspected for HIV, HBV or HCV</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Breastfed child by mother known/suspected for HIV, HBV, or HCV</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hemodialysis</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Other Criteria resulting in IRD designation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown medical/social history</td>
<td>2</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Hemodiluted blood specimen used for infectious disease testing</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*Includes all DTAC and CDC led investigations with Adjudication of Proven or Probable
Note: Ongoing investigations on three 2018 cases
Criteria implicated in transmission* (Published/DTAC)

- Medical/social criteria resulting in IRD designation
 - Sex with a person known or suspected to have HIV, HBV, or HCV infections
 - Men who have had sex with men (MSM)
 - Women who have had sex with a man with a history of MSM behavior
 - Sex in exchange for money or drugs
 - Sex with a person who had sex in exchange for money or drugs
 - Sex with a person that has injected drugs by IV, IM, or subQ route
 - Injected drugs by IV, IM, or subQ route for nonmedical reasons
 - Incarceration for > 72 hours
 - Newly diagnosed or have been treated for syphilis, gonorrhea, Chlamydia, or genital ulcers (2019)
 - Child (age ≤18 months) born to a mother known to be infected with, or at increased risk for HIV, HBV, or HCV
 - Child breastfed within the preceding 12 months by mother known to be infected with, or at increased risk for HIV infection.
 - Hemodialysis (only increased risk for HCV)

- Other criteria resulting in IRD designation
 - Unknown medical/social history
 - Hemodiluted blood specimen used for infectious disease testing

* Includes all DTAC and CDC led investigations with Adjudication of Prov or Probable
Criteria Considered for Removal

- Medical/social criteria resulting in IRD designation
 - Sex with a person known or suspected to have HIV, HBV, or HCV infections
 - Men who have had sex with men (MSM)
 - Women who have had sex with a man with a history of MSM behavior
 - Sex in exchange for money or drugs
 - Sex with a person who had sex in exchange for money or drugs
 - Sex with a person that has injected drugs by IV, IM, or subQ route
 - Injected drugs by IV, IM, or subQ route for nonmedical reasons
 - Incarceration for > 72 hours
 - Newly diagnosed or have been treated for syphilis, gonorrhea, Chlamydia, or genital ulcers
 - Child (age ≤18 months) born to a mother known to be infected with, or at increased risk for HIV, HBV, or HCV
 - Child breastfed within the preceding 12 months by mother known to be infected with, or at increased risk for HIV infection.
 - Hemodialysis (only increased risk for HCV)
- Other Criteria resulting in IRD designation
 - Unknown medical/social history
 - Hemodiluted blood specimen used for infectious disease testing
Sexually Transmitted Disease (STD)
Evaluation of STD as an IRD criteria

- Does a person with a newly diagnosed or receiving treatment for syphilis, gonorrhea, chlamydia, or genital ulcers in the last 12 months have a higher risk of acquiring a newly diagnosed HIV infection?

- Literature review
 - MSM & STD
 - Many publications describing risk of HIV among MSM with STD
 - MSM are classified as IRD regardless of STD status
 - Non-MSM & STD
 - Is there a significant risk of acute HIV infection if non-MSM (male or female) person had an STD diagnosis within the previous 12 months?
 - Focus on US studies
 - Which STDs confer a risk for acute HIV?
 a. Syphilis
 b. Gonorrhea
 c. Chlamydia
 d. HSV/genital ulcer
Risk of HIV among women following STD diagnosis

- Surveillance data to estimate risks of HIV acquisition
 - Florida STD and HIV surveillance: 2000-2009
 - HIV rate among 13–59-year-old women following a diagnosis of syphilis, gonorrhea or chlamydia compared to women with no reported STD.
 - Among 328,456 women with reported STD and 2,221,944 PY’s of follow-up
 - Syphilis (n=3325), gonorrhea (n=67,784) or chlamydia (n=257,347)
 - 2118 women diagnosed with HIV
 - Among 5,582,148 women with no reported STD and 64,763,832 PY’s of follow-up
 - 19,531 women diagnosed with HIV

Risk of HIV among women following STD diagnosis

Risk of HIV among women following STD diagnosis

Subsequent HIV diagnosis rate was higher for women diagnosed with Syphilis, gonorrhea, or chlamydia than with no STD.

Risk of HIV among men following syphilis diagnosis

- 9,512 men with syphilis were followed by health department
 - 27% of men self-identified as heterosexual
 - 1,323 were subsequently diagnosed as having HIV infection 60–3,753 days after their syphilis diagnosis

- The risk of a subsequent diagnosis of HIV infection was 3.6% in the first year after syphilis was diagnosed and reached 17.5% 10 years after a syphilis diagnosis

- Of men diagnosed with syphilis in 2003, 21.5% were reported as having a new HIV diagnosis by December 31, 2011.

Risk of HIV among men following syphilis diagnosis

Figure. Cumulative percent of men aged 13–59 years with newly reported HIV infection following syphilis diagnosis, by year of syphilis diagnosis: Florida, 2000–2011

Risk of HIV among men following syphilis diagnosis

- Risk of HIV infection after syphilis infection was 3.6% in the first year
 - 17.5% at 10 years after a syphilis diagnosis.
- Men who acquire syphilis are at high risk of HIV infection.

Risk of HIV among men and women following any STD

- Retrospective cohort of heterosexual men and women with repeat HIV tests between January 1990 and April 1998 in New Orleans STD clinic
- Cox hazard survival analysis used to examine risk factors for HIV seroconversion

Risk of HIV among men and women following any STD

- Syphilis and genital ulcer disease most associated with HIV infection
- Other non-ulcerative STDs might be associated

Risk of HIV after HSV-2 seroconversion

- Systematic review and meta-analysis of longitudinal studies.

- Of 19 eligible studies identified, 8 described incident HSV-2 seroconversion and risk of HIV acquisition.
- Most HIV seroconversions occurred during same period as HSV-2 seroconversion.
- Only 2 studies in U.S.

Risk of HIV after HSV-2 seroconversion

- Prevalent HSV-2 infection: 3-fold increased risk of HIV

- Recent HSV-2 seroconversion: Higher risk of HIV than prevalent HSV-2 infection (range: 1- to 6-fold)
 - Might be less in the United States

Freeman et al. Herpes simplex virus 2 infection increases HIV acquisition in men and women: systematic review and meta-analysis of longitudinal studies. AIDS, 2006.
STD and increased risk for HIV transplant-transmission

- Available data from US studies suggest that STD is a risk factor for HIV infection
 - Risk of subsequent HIV infection persists for up to 10 years following STD diagnosis
- Highest risk for HIV infection is with recent syphilis or new genital ulcer
 - In females, chlamydia and gonorrhea confer risk for HIV infection
Hemodialysis
Hemodialysis and the risk of undetected HCV infection

- Hemodialysis numbers
 - Persons on hemodialysis in 2016: 450,887
 - Patients beginning hemodialysis 2016: 108,895

- Incidence of Hepatitis C in general population is unknown
 - High rates of asymptomatic infection
 - Testing not mandated
 - Among dialysis patients, testing recommended but not required and practices vary
 - Reporting not universal

- Data sources
 - DTAC data
 - CDC outbreak reports
 - National Healthcare Safety Network Outpatient Dialysis Center Practices Survey
 - Dialysis Outcomes and Practice Patterns Study (DOPPS)

Transmission of HCV associated with hemodialysis

- No reported transmission from a donor with history of hemodialysis (from either DTAC data or publications in scientific literature)

- CDC Outbreak Investigations
 - During 2008-2018, 21 outbreaks in hemodialysis settings reported to CDC
 - 102 outbreak-associated cases of HCV
 - 3,026 persons notified for screening

- DOPPS

Over 80% of dialysis centers test for HCV at least annually

<table>
<thead>
<tr>
<th>Year</th>
<th>Prevalence of HCV (per 100 person years)</th>
<th>Incidence of HCV (per 100 person years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>5.70</td>
<td>0.14</td>
</tr>
<tr>
<td>2015</td>
<td>5.31</td>
<td>0.11</td>
</tr>
<tr>
<td>2016</td>
<td>5.38</td>
<td>0.19</td>
</tr>
<tr>
<td>2017</td>
<td>5.27</td>
<td>0.08</td>
</tr>
</tbody>
</table>
DOPPS – HCV prevalence

<table>
<thead>
<tr>
<th>Region/Country</th>
<th>DOPPS Phase</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>United States</td>
<td>11.5 (3215)</td>
<td>9.6 (2240)</td>
</tr>
<tr>
<td>All DOPPS countries</td>
<td>14.3 (7894)</td>
<td>10.4 (8858)</td>
</tr>
<tr>
<td>DOPPS 1+ countries</td>
<td>14.3 (7894)</td>
<td>12.1 (6682)</td>
</tr>
</tbody>
</table>

HCV prevalence, by DOPPS region/country and study phase, in initial cross-sections of study patients in each phase.

- HCV prevalence by phase shown as % (n patients) weighted by facility sampling fraction; n=51,633 patients

DOPPS – HCV incidence per 100 patient years

<table>
<thead>
<tr>
<th>Region/Country</th>
<th>DOPPS Phase</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>United States</td>
<td>3.5(3.1,4.1)</td>
<td>2.5(1.7,3.6)</td>
</tr>
<tr>
<td></td>
<td>[184/4033]</td>
<td>[27/937]</td>
</tr>
<tr>
<td>All DOPPS countries</td>
<td>2.9(2.6,3.2)</td>
<td>2.0(1.8,2.3)</td>
</tr>
<tr>
<td></td>
<td>[339/9584]</td>
<td>[229/7817]</td>
</tr>
<tr>
<td>DOPPS 1+ countries</td>
<td>2.9(2.6,3.2)</td>
<td>2.2(1.9,2.5)</td>
</tr>
<tr>
<td></td>
<td>[339/9584]</td>
<td>[180/5568]</td>
</tr>
</tbody>
</table>

HCV incidence per 100 patient years, by DOPPS region/country and phase

- Restricted to patients with at least two HCV antibody measurements and in whom the initial HCV antibody measurement was negative.
- HCV incidence by phase shown as rate per 100 patient years (95% CI) [n HCV patients/N patients total]; restricted to facilities accepting HCV+ patients.

Hemodialysis and IRD designation

- Outpatient hemodialysis confers a small risk of HCV infection
- Due to improving infection control practices, the risk has declined since 2001
- Likelihood of acute, undetected HCV infection resulting from most recent outpatient dialysis exposure is low
Hemodilution
FDA tissue hemodilution guidelines

- Cannot use sample for infectious disease screening of tissue donors if

 - Blood and colloid (e.g., plasma, platelets, albumin) transfused in previous 48 hrs + crystalloid transfused in previous 1 hour > patient blood volume

 OR

 - Colloid transfused in previous 48 hrs + crystalloid transfused in previous 1 hr > patient plasma volume
Hemodilution can result in false-negative test

- Organ donors can receive multiple blood transfusions and fluid prior to HIV/HBV/HCV screening, resulting in hemodilution
- Hemodilution can potentially result in a false negative result
- In 1986, an organ donor tested negative for anti-HIV antibodies by EIA after receiving 56 units of blood components
 - HIV transmission to 2 recipients
 - Pre-transfusion donor blood samples tested positive by EIA, suggesting initial test was false negative because of hemodilution

https://www.cdc.gov/mmwr/preview/mmwrhtml/00019010.htm
Improvements in HIV screening diagnostics

- Should donor sample hemodilution continue to result in increased risk designation in era of universal donor NAT?

What is effect of hemodilution on NAT?

- Model generated to illustrate effect on NAT window period during early infection
- Assumptions include
 - 50% blood loss in average-sized donor (2.5L remaining blood volume)
 - Equal mixing (2.5L of blood would result in 1:1 dilution of sample)
 - Number of initial virions that establish infection, viral doubling time, and test limit of detection based on recent CDC modelling paper
Model of effective window period length after hemodilution from blood transfusion — HIV, HBV, and HCV
Hemodilution resulting in increased risk designation

- Model suggests hemodilution can lengthen window period by >40%
- If even mixing not assumed, risk of false negative higher
- If the time between infection and the NAT is shortly after standard NAT window period and the donor receives a large amount of blood/fluids prior to NAT testing, then hemodilution can result in false negative testing
Untreated persons can have high viral load (>100,000 copies/mL)

Certain patients can chronically have low viral loads

Manufacturer studies on hemodilution - HBV

- Wide variety of viral load depending on progression of disease
- Asymptomatic chronic infections can have low levels of viremia

![Procleix Ulitro Assay Table]

Manufacturer studies on hemodilution - HCV

- Chronic disease usually have higher viral load
 - Can have nadirs <1,000 IU/mL

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2741541/
Hemodilution and IRD designation

- Hemodilution of sample tested by HIV, HBV, or HCV NAT can result in undetected infection
- The effect on NAT detection is most likely to occur during early infection and will result in prolonged window period
Summary of CDC Analyses

- IRD more likely to be infected with HCV than non-IR donors
- Transmissions of HBV and HCV from recently infected IRD to organ recipients continue to occur
 - As a result of opioid epidemic, might be occurring with greater frequency
 - Post-transplant screening of IRD organ recipients led to early identification and treatment
 - Risk of death and graft failure was likely reduced
- IRD designation is associated with underutilization of adult lungs and kidney and pediatric hearts
 - Magnitude of under utilization is lower than previous estimates
 - ~200 organs underutilized per year, small proportion of total unmet need
- Period during which reported donor risk behaviors result in IRD designation can be safely shortened
- Hemodialysis can be removed as IRD criteria while preserving safety
Acknowledgements

Co-authors-MMWR
- CDC
 - Winston Abara
 - Melissa Collier
 - Anne Moorman
 - Danae Bixler
 - Jefferson Jones
 - Pallavi Annambhotla
 - John Brooks
- HRSA
 - James Bowman
 - Marilyn Levi
Other Acknowledgements
CDC
- Denise Cardo
- Michael Bell
- Stefanie Bumpus
- Priti Patel
- Duc Nguyen
OASH
- James Berger
- Richard Henry

Co-authors-HBV/HCV analyses (CDC)
- Danae Bixler
- Pallavi Annambhotla
- Winston Abara
- Melissa Collier
- Jefferson Jones
- Tonya Hayden
- Sumathi Ramachandran
- Saleem Kamili
- Anne Moorman

Co-authors-Mathematical Modeling (CDC)
- Jefferson Jones
- Brian Gurbaxani
- Alice Asher
- Stephanie Sansom
- Pallavi Annambhotla
- Anne Moorman
- John Brooks

Other Acknowledgements
HRSA
- Frank Holloman
- Robert Walsh
External partners
- OPTN/Disease Transmission Advisory Committee
- American Society of Transplant Surgeons
- American Society of Transplantation
- Association of Organ Procurement Organizations
- Matthew Sapiano
- Jefferson Jones
- James Bowman
- Marilyn Levi
Thank you

For more information, contact CDC
1-800-CDC-INFO (232-4636)

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.
LUNCH
Potential Donor Derived Transmission Events

(extended description)

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of PDDTE reviewed by DTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>7</td>
</tr>
<tr>
<td>2006</td>
<td>60</td>
</tr>
<tr>
<td>2007</td>
<td>97</td>
</tr>
<tr>
<td>2008</td>
<td>102</td>
</tr>
<tr>
<td>2009</td>
<td>152</td>
</tr>
<tr>
<td>2010</td>
<td>157</td>
</tr>
<tr>
<td>2011</td>
<td>181</td>
</tr>
<tr>
<td>2012</td>
<td>198</td>
</tr>
<tr>
<td>2013</td>
<td>284</td>
</tr>
<tr>
<td>2014</td>
<td>278</td>
</tr>
<tr>
<td>2015</td>
<td>290</td>
</tr>
<tr>
<td>2016</td>
<td>274</td>
</tr>
<tr>
<td>2017</td>
<td>272</td>
</tr>
</tbody>
</table>
Updated Potential Donor Derived Transmission Events (extended description)

<table>
<thead>
<tr>
<th>Year</th>
<th>Total PDDTE</th>
<th>DTAC cases</th>
<th>Proven/Probable Transmissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>212</td>
<td>180</td>
<td>31</td>
</tr>
<tr>
<td>2012</td>
<td>241</td>
<td>198</td>
<td>33</td>
</tr>
<tr>
<td>2013</td>
<td>392</td>
<td>284</td>
<td>32</td>
</tr>
<tr>
<td>2014</td>
<td>452</td>
<td>278</td>
<td>35</td>
</tr>
<tr>
<td>2015</td>
<td>407</td>
<td>290</td>
<td>38</td>
</tr>
<tr>
<td>2016</td>
<td>430</td>
<td>274</td>
<td>42</td>
</tr>
<tr>
<td>2017</td>
<td>368</td>
<td>272</td>
<td>47</td>
</tr>
<tr>
<td>2018</td>
<td>382</td>
<td>276</td>
<td>26*</td>
</tr>
</tbody>
</table>

Many cases reported in 2018 are under ongoing investigation; 26 proven or probable transmissions have been identified as of Jan 15, 2019
More Donors at “Increased Risk” (extended description)

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of Deceased Donors Recovered</th>
<th>Percent of Deceased Donors with PHS Identified Risk (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>587</td>
<td>7.7</td>
</tr>
<tr>
<td>2006</td>
<td>672</td>
<td>8.4</td>
</tr>
<tr>
<td>2007</td>
<td>607</td>
<td>7.5</td>
</tr>
<tr>
<td>2008</td>
<td>617</td>
<td>7.7</td>
</tr>
<tr>
<td>2009</td>
<td>638</td>
<td>8.0</td>
</tr>
<tr>
<td>2010</td>
<td>709</td>
<td>8.9</td>
</tr>
<tr>
<td>2011</td>
<td>836</td>
<td>10.3</td>
</tr>
<tr>
<td>2012</td>
<td>966</td>
<td>11.9</td>
</tr>
<tr>
<td>2013</td>
<td>1,110</td>
<td>13.4</td>
</tr>
<tr>
<td>2014</td>
<td>1,772</td>
<td>20.6</td>
</tr>
<tr>
<td>2015</td>
<td>2,016</td>
<td>22.2</td>
</tr>
<tr>
<td>2016</td>
<td>2,478</td>
<td>24.9</td>
</tr>
</tbody>
</table>
Discard rate trends – kidney

<table>
<thead>
<tr>
<th>Year</th>
<th>Recovered Kidney Volume</th>
<th>Observed Kidney Discard Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1987</td>
<td>1816*</td>
<td>6.8</td>
</tr>
<tr>
<td>1988</td>
<td>7,705</td>
<td>5.1</td>
</tr>
<tr>
<td>2000</td>
<td>10,909</td>
<td>14.9</td>
</tr>
<tr>
<td>2009</td>
<td>14,394</td>
<td>19.2</td>
</tr>
<tr>
<td>2010</td>
<td>2,641</td>
<td>N/A</td>
</tr>
<tr>
<td>2011</td>
<td>2,646</td>
<td>N/A</td>
</tr>
<tr>
<td>2012</td>
<td>2,763</td>
<td>N/A</td>
</tr>
<tr>
<td>2013</td>
<td>2,734</td>
<td>N/A</td>
</tr>
<tr>
<td>2014</td>
<td>2,888</td>
<td>N/A</td>
</tr>
<tr>
<td>2015</td>
<td>3,157</td>
<td>19.2</td>
</tr>
<tr>
<td>2016</td>
<td>3,629</td>
<td>20.0</td>
</tr>
</tbody>
</table>

* Data collection began 10/1/87
Graft Survival and Discard Rates by KDPI

<table>
<thead>
<tr>
<th>KDPI</th>
<th>2-year Graft Survival Rate (%)</th>
<th>Discard Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5</td>
<td>95.0</td>
<td>1.1</td>
</tr>
<tr>
<td>21-25</td>
<td>91.7</td>
<td>5.1</td>
</tr>
<tr>
<td>46-50</td>
<td>90.3</td>
<td>11.1</td>
</tr>
<tr>
<td>71-75</td>
<td>87.2</td>
<td>27.0</td>
</tr>
<tr>
<td>96-100</td>
<td>78.8</td>
<td>75.1</td>
</tr>
</tbody>
</table>
Deceased Organ Donors in the United States by PHS Increased Risk Status
(extended description)

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of Deceased Standard Risk Donors</th>
<th>Number of Deceased Increased Risk Donors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>7226</td>
<td>709</td>
</tr>
<tr>
<td>2011</td>
<td>7283</td>
<td>836</td>
</tr>
<tr>
<td>2012</td>
<td>7171</td>
<td>966</td>
</tr>
<tr>
<td>2013</td>
<td>7157</td>
<td>1111</td>
</tr>
<tr>
<td>2014</td>
<td>6815</td>
<td>1772</td>
</tr>
<tr>
<td>2015</td>
<td>7059</td>
<td>2016</td>
</tr>
<tr>
<td>2016</td>
<td>7491</td>
<td>2478</td>
</tr>
<tr>
<td>2017</td>
<td>7580</td>
<td>2704</td>
</tr>
</tbody>
</table>
Survival Benefit of IRD Livers

<table>
<thead>
<tr>
<th>Time After Offer (months)</th>
<th>0</th>
<th>12</th>
<th>24</th>
<th>36</th>
<th>48</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declined</td>
<td>56,106</td>
<td>34,641</td>
<td>24,595</td>
<td>18,664</td>
<td>14,308</td>
<td>10,801</td>
</tr>
<tr>
<td>Accepted</td>
<td>9851</td>
<td>6620</td>
<td>4762</td>
<td>3554</td>
<td>2749</td>
<td>2071</td>
</tr>
</tbody>
</table>
Potential Donor Derived Transmission Events (PDDTE) (extended description)

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of PDDTE reviewed by DTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>7</td>
</tr>
<tr>
<td>2006</td>
<td>60</td>
</tr>
<tr>
<td>2007</td>
<td>97</td>
</tr>
<tr>
<td>2008</td>
<td>102</td>
</tr>
<tr>
<td>2009</td>
<td>152</td>
</tr>
<tr>
<td>2010</td>
<td>157</td>
</tr>
<tr>
<td>2011</td>
<td>181</td>
</tr>
<tr>
<td>2012</td>
<td>198</td>
</tr>
<tr>
<td>2013</td>
<td>284</td>
</tr>
<tr>
<td>2014</td>
<td>278</td>
</tr>
<tr>
<td>2015</td>
<td>290</td>
</tr>
<tr>
<td>2016</td>
<td>274</td>
</tr>
</tbody>
</table>
Deceased organ donors in the United States by increased risk status*
2010–2017 (extended description)

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of Deceased Standard Risk Donors</th>
<th>Number of Deceased Increased Risk Donors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>7226</td>
<td>709</td>
</tr>
<tr>
<td>2011</td>
<td>7283</td>
<td>836</td>
</tr>
<tr>
<td>2012</td>
<td>7171</td>
<td>966</td>
</tr>
<tr>
<td>2013</td>
<td>7157</td>
<td>1111</td>
</tr>
<tr>
<td>2014</td>
<td>6815</td>
<td>1772</td>
</tr>
<tr>
<td>2015</td>
<td>7059</td>
<td>2016</td>
</tr>
<tr>
<td>2016</td>
<td>7491</td>
<td>2478</td>
</tr>
<tr>
<td>2017</td>
<td>7580</td>
<td>2704</td>
</tr>
</tbody>
</table>
Number of deceased organ donors who died from drug intoxication and those dying from drug intoxication + history of intravenous drug use United States, 2010–2017 (extended description)

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of Donor with Drug Intoxication Reported as Mechanism of Death</th>
<th>Number of Donor with Drug Intoxication Reported as Mechanism of Death and History of IDU</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>342</td>
<td>107</td>
</tr>
<tr>
<td>2011</td>
<td>473</td>
<td>169</td>
</tr>
<tr>
<td>2012</td>
<td>440</td>
<td>178</td>
</tr>
<tr>
<td>2013</td>
<td>560</td>
<td>248</td>
</tr>
<tr>
<td>2014</td>
<td>625</td>
<td>332</td>
</tr>
<tr>
<td>2015</td>
<td>848</td>
<td>471</td>
</tr>
<tr>
<td>2016</td>
<td>1262</td>
<td>727</td>
</tr>
<tr>
<td>2017</td>
<td>1382</td>
<td>825</td>
</tr>
</tbody>
</table>
Number and percent of donors with a reactive Hepatitis C Virus nucleic acid test result by increased risk status — United States, 2014–2017 (extended description)

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of IRD (HCV NAT Positive) Donors (percent)</th>
<th>Number of SRD (HCV NAT Positive) Donors (percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>7 (9%)</td>
<td>5 (2%)</td>
</tr>
<tr>
<td>2015</td>
<td>252 (15%)</td>
<td>78 (1%)</td>
</tr>
<tr>
<td>2016</td>
<td>363 (15%)</td>
<td>98 (1%)</td>
</tr>
<tr>
<td>2017</td>
<td>423 (16%)</td>
<td>80 (1%)</td>
</tr>
</tbody>
</table>