OVERVIEW: ZIKA VACCINES IN DEVELOPMENT

Gerald R. Kovacs, PhD
Biomedical Advanced Research and Development Authority (BARDA)
Office of the Assistant Secretary for Preparedness and Response (ASPR)
February 8, 2017

National Vaccine Advisory Committee
Washington, DC

Resilient People. Healthy Communities. A Nation Prepared.
Prevention of ZIKV Infection

There is currently no licensed ZIKV vaccine available, however...

- Vaccines for other flaviviruses have been developed and used for over 70 years
- Active development programs for Dengue and West Nile vaccines have been ongoing for over 30 years; however, knowledge of Zika virus was limited at the outset of the epidemic
- Past experience was leveraged for ZIKV vaccine development
- Zika R&D efforts accelerated greatly in 2016 by NIAID and WRAIR, followed by advanced development projects at BARDA
- A coordinated, interagency effort was established to oversee vaccine development and portfolio management
Product Development Pipeline

Early Concept and Product Development
- NIH and DoD

Advanced Product Development
- ASPR/BARDA

Commercial Manufacturing and Licensure
- Industry

Regulatory Review
- FDA

Industry
- FDA consultation and interim review

Adapted from AS Fauci/NIAID
Vaccine Landscape Feb 2016

<table>
<thead>
<tr>
<th>Platform</th>
<th>Research & Discovery</th>
<th>Preclinical</th>
<th>Phase 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recombinant or Subunit</td>
<td>NOVAVAX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Live Attenuated</td>
<td>VLA INSITUTO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whole Virus Inactivated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nucleic Acid</td>
<td>DNA-VRC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viral Vector</td>
<td>PROFECTUS BIOSCIENCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
US Zika Vaccine Goals

2016-2018

Aim #1: Evaluate available vaccine candidates to assess safety, efficacy, and immunogenicity and identify protective immune correlates during the time of highest disease incidence.

By 2018

Aim #2: Deploy an available vaccine under an appropriate regulatory mechanism to US populations at high risk of exposure.

By 2020

Aim #3: Work with industry partners to commercialize vaccine(s) for broad distribution.
General Considerations on Vaccine Technologies

<table>
<thead>
<tr>
<th>Technology</th>
<th>Pros</th>
<th>Cons</th>
<th>Licensed Human Flavivirus Vaccines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nucleic Acid (DNA, mRNA)</td>
<td>Simple process development/mfg. Potential for rapid response capability.</td>
<td>No DNA or mRNA vaccines licensed for human use. Limited experience at commercial scale.</td>
<td>No</td>
</tr>
<tr>
<td>Whole Virus Inactivated</td>
<td>Likely straightforward. Commercial platforms exist. Inactivated vaccines are approved for other indications.</td>
<td>May need several doses and adjuvant. Need large production requirement.</td>
<td>Japanese Encephalitis, Tick Borne Encephalitis</td>
</tr>
<tr>
<td>Live Attenuated (including flavi-chimeras)</td>
<td>Commercial platforms exist.</td>
<td>Generally contraindicated in pregnant women and very young children.</td>
<td>Yellow fever, Dengue, Japanese Encephalitis</td>
</tr>
<tr>
<td>Viral Vectors</td>
<td>Viral-vectored vaccines in advanced trials for other diseases. Commercial platforms exist.</td>
<td>Safety concerns in pregnant women, depending on replication competency.</td>
<td>No</td>
</tr>
<tr>
<td>Recombinant/Subunit</td>
<td>Low risk. Several commercial platforms exist.</td>
<td>Some difficulty depending on the platform, e.g. protein folding. Use of adjuvants may increase concerns.</td>
<td>No</td>
</tr>
</tbody>
</table>

General Considerations on Vaccine Technologies
Alignment of USG Candidates

<table>
<thead>
<tr>
<th>Primary Aim</th>
<th>Current USG Candidates</th>
</tr>
</thead>
</table>
| **Aim #1:** Evaluation of candidates to obtain correlate | DNA
VRC, Partner TBD | mRNA
VRC, BARDA, Moderna | PIV
WRAIR, NIAID, BARDA |
| **Aim #2:** Deploy vaccine to “at risk” US population | DNA
VRC, Partner TBD | mRNA
BARDA, Moderna | |
| **Aim #3:** Commercialization of global, durable vaccine | PIV
WRAIR, NIAID, BARDA, Sanofi | PIV
BARDA, Takeda | Live Attenuated Zika Chimera
LID, Butantan |
| **Additional Candidates In Development** | VSV Vectored Vaccine
NIAID, Harvard, No Partner | Chimera
CDC, No Partner | VLP
CDC, No Partner |
| | mRNA
VRC, GSK | PIV
BARDA, Butantan | |

Other additional candidates are under early development

Note: Candidates from Aim 2 can be used to address Aim 3
Nucleic Acid Vaccines
NIH Begins Testing Investigational Zika Vaccine in Humans

- DNA vaccine developed by VRC
- Phase I trial to enroll 80 vols ages 18-35 yo
- Initial results expected by the end of 2016
Zika DNA Phase 2b Vaccine Trial Design

A Phase 2b, Randomized, Placebo-Controlled Trial to Evaluate the Safety and Immunogenicity of a Zika Virus DNA Vaccine, VRC-ZKADNA085-00-VP

30+ sites in the US, Caribbean, Central and South America

Target start date: Jan 2017

<table>
<thead>
<tr>
<th>Study Schema</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

* Final interval pending NHP data.
mRNA Vaccine

- Manufactured by Moderna Therapeutics
- Can be used to deliver virtually any gene
- Flexible, rapid manufacturing platform – “plug and play”
- Novel chemistry enables mRNA to elude intracellular innate immune responses
- Once in cell, acts like a native mRNA to express foreign gene
- Robust, protective immunological responses in animal models
- Needle and syringe delivery
- Phase I initiated in December 2016
Purified Inactivated Vaccines
Inactivated Zika Vaccines (ZPIV)

- Two candidates in development: Sanofi Pasteur and Takeda
- Formalin-inactivated Zika virus, alum-adjuvanted
- “Proof-of-concept” lot manufactured by WRAIR based on technology used for JEV vaccine
- Vaccine is fully protective in mice and NHP models
- NIAID and WRAIR will conduct five Phase I clinical trials to evaluate safety and immunogenicity
- WRAIR transferring technology to Sanofi Pasteur – accelerating development
- BARDA awarded large development contracts to Sanofi and Takeda to manufacture and license an inactivated Zika vaccine

Adapted from AS Fauci/NIAID
ZPIV Phase I Clinical Trials

- 5 clinical trials planned with ZPIV (Q4 2016-Q1 2017)
 - Four single-site trials testing ZPIV alone
 - St. Louis University (NIAID/VTEU) – Dose sparing, ongoing
 - WRAIR – Prior vaccination with other flavivirus vaccines (YF, JE), ongoing
 - BIDMC (WRAIR) – Alternate dose schedule
 - Puerto Rico (NIAID/VTEU) – Population previously exposed to flavivirus infection
 - One trial testing ZPIV in combination with Zika DNA vaccine prime (VRC)
Live
Attenuated/Chimeric Vaccine
Live Attenuated DV/ZIKV Vaccine
(NIAID Laboratory of Infectious Diseases)

Pentavalent DENV + ZIKV:

- Addition of this ZIKV component provides an immunological advantage for DENV
- ZIKV component may also be suitable as stand-alone vaccine

Pre-clinical development

Phase III underway
Vaccine Landscape Jan. 2017

<table>
<thead>
<tr>
<th>Platform</th>
<th>Research & Discovery</th>
<th>Preclinical</th>
<th>Phase 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recombinant or Subunit</td>
<td>NOVAVAX, Z-Stat, VBI Vaccines, Sinergium Biotech, Mundo Sano</td>
<td>Institut Pasteur, Bharat Biotech</td>
<td>DNA-VRC</td>
</tr>
<tr>
<td>Live Attenuated</td>
<td>Sanofi Pasteur, Institut Pasteur</td>
<td>Valneva, Takeda, Sanofi Pasteur</td>
<td>USG Funded</td>
</tr>
<tr>
<td>Whole Virus Inactivated</td>
<td>Fiocruz, Emergent Biosolutions, Instituto Butantan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nucleic Acid</td>
<td>Pharos Biologicals, Invectys</td>
<td>Institut Pasteur</td>
<td></td>
</tr>
<tr>
<td>Viral Vector</td>
<td>VSV with Harvard, Geovax, PaxVax</td>
<td>NewLink Genetics, Themis</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>IMV Immunovaccine, Leidos, Codagenix</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

USG Funded
Key Challenges/Questions

- **Regulatory/Clinical**
 - Will future disease incidence support evaluation of vaccine efficacy?
 - Which regulatory path will be most feasible?
 - Will human challenge and/or accelerated approval (correlate of protection) facilitate/accelerate evaluation?
 - Will an animal model(s) provide us with sufficient data to support efficacy determinations in humans?
 - Will pre-immunity to other flaviviruses affect Zika vaccine take, and vice versa?

- **Manufacturing**
 - Will manufacturers be able to develop a vaccine fast enough to impact the epidemic?
 - Will previous flavivirus vaccine platforms work well enough to prevent congenital infections?
 - Will the market sustain more than one vaccine?