OVERVIEW: ZIKA VACCINES IN DEVELOPMENT

Robert Johnson, PhD
Biomedical Advanced Research and Development Authority (BARDA)
Office of the Assistant Secretary for Preparedness and Response (ASPR)
February 8, 2018

National Vaccine Advisory Committee
Washington, DC

Resilient People. Healthy Communities. A Nation Prepared.
Zika Virus

Belongs to the family *Flaviviridae* (includes dengue, West Nile, Yellow Fever, Japanese encephalitis and St. Louis Encephalitis viruses)

Brief history

- First isolated in Zika forest in 1947 with limited human infections in Africa and SE Asia through 2006
- Emerged in Micronesia in 2007, and French Polynesia in 2008
- Most recent outbreak began in Brazil in 2015
- Currently found in over 80 countries and territories worldwide

Disease

- 80% asymptomatic
- 20% of patients present with rash, fever, conjunctivitis, and arthralgia
- Association with Congenital Zika Syndrome, Guillain-Barre Syndrome and many other neurological conditions
How Zika Spreads

Most people get Zika from a mosquito bite.

A mosquito bites a person infected with Zika virus.

The mosquito becomes infected.

A mosquito will often live in a single house during its lifetime.

More mosquitoes get infected and spread the virus.

The infected mosquito biting a family member or neighbor and infects them.

During pregnancy, a pregnant woman can pass Zika virus to her fetus during pregnancy. Zika causes microcephaly, a severe birth defect that is a sign of incomplete brain development.

Through sex, Zika virus can be passed through sex from a person who has Zika to his or her sex partners.

Through blood transfusion, there is a strong possibility that Zika virus can be spread through blood transfusions.
Congenital Syndrome

- Multi-faceted syndrome with broad-ranging neurological sequelae, unknown long-term health consequences
- Reported in 26 countries and territories in the Americas since Oct 2015
- 3,720 cases of microcephaly and/or CNS malformation reported (103 in North America; 3617 in Latin America)

Prevention of ZIKV Infection

There is currently no licensed ZIKV vaccine available, however...

- Vaccines for other flaviviruses have been developed and used for over 70 years
- Active development programs for Dengue and West Nile vaccines have been ongoing for over 30 years; however, knowledge of Zika virus was limited at the outset of the epidemic
- Past experience was leveraged for ZIKV vaccine development
- Zika R&D efforts accelerated greatly in 2016 by NIAID and WRAIR, followed by advanced development projects at BARDA
- A coordinated, interagency effort was established to oversee vaccine development and portfolio management
- BARDA has invested over $265 million in vaccine development
VACCINES IN CLINICAL DEVELOPMENT
Phase I Clinical Trials – 2 candidates: VRC 5288 and VRC 5283

- Interim data reported in Lancet, Dec. 2017 (Gaudinski et al)
- Zika neutralizing antibodies developed in 100% of subjects

Phase II/IIb Clinical Trial – VRC 5283

- Part A: Dose Escalation and Injection Number Study
 - Enrollment complete
 - Immunogenicity evaluation ongoing
- Part B: Efficacy Study
 - Regimen selected May 2017
 - Enrollment initiated 7/19/17, 248/2,400 enrolled as of Jan 30, 2017
 - 11/20 sites activated

Industry partner identified for commercialization
A Phase 2b, Randomized Trial to Evaluate the Safety and Immunogenicity of a Zika Virus ONA Vaccine

Healthy Volunteers Ages 15-35

20 sites in the US, Caribbean, Central and South America

Zika, is being reported in Peru, Mexico, and other areas that are 705 sites.

VRC 705: Phase 2/2b

<table>
<thead>
<tr>
<th>VRC 705 Phase 2b</th>
<th>Part A</th>
<th>Part B Regimen: 4mg Split Dose by PharmaJet: Vaccination at 0, 4, 8 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td>n:</td>
<td>Total Dose</td>
</tr>
<tr>
<td>1</td>
<td>30</td>
<td>4 mg</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>4 mg</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>5 mg</td>
</tr>
<tr>
<td>Total</td>
<td>90</td>
<td>Part A Enrollment: Complete</td>
</tr>
<tr>
<td>4</td>
<td>1200</td>
<td>4 mg</td>
</tr>
<tr>
<td>5</td>
<td>1200</td>
<td>N/A</td>
</tr>
<tr>
<td>Total</td>
<td>2400</td>
<td>Blinded evaluation of case rates to increase sample size as needed</td>
</tr>
</tbody>
</table>

Courtesy: G. Chen, VRC
Safety and Immunogenicity of an Anti–Zika Virus DNA Vaccine — Preliminary Report

Pablo Tebas et al.

- DNA plasmid vaccine expressing Zika prM-E
- Two groups of 20 received 1mg or 2 mg ID at 0, 4, 12 weeks w/electroporation
- No SAEs reported
- Anti-Zika antibodies detected in 100% in both groups
- Zika neutralizing antibodies developed in 62% of subjects
- Passive transfer of human vaccinee serum protected in a lethal mouse model
Live attenuated vaccine for DENV / ZIKV

Pentavalent DENV + ZIKV:

DEN1 DEN2 DEN3 DEN4 +

Δ3 0 Δ3 0 Δ3 0 Δ3 0 Δ3 0

5' - C prM E NS1 NS2A NS2B NS3 NS4A NS4B NS5 - 3' rDEN1Δ30

5' - C prM E NS1 NS2A NS2B NS3 NS4A NS4B NS5 - 3' rDEN2/4Δ30

5' - C prM E NS1 NS2A NS2B NS3 NS4A NS4B NS5 - 3' rDEN3Δ30/31

5' - C prM E NS1 NS2A NS2B NS3 NS4A NS4B NS5 - 3' rDEN4Δ30

5' - C prM E NS1 NS2A NS2B NS3 NS4A NS4B NS5 - 3' rZIKV/D4Δ30

Phase III underway

Pre-clinical development

NIAID Laboratory of Viral Diseases

Courtesy: S. Whitehead, LVD
<table>
<thead>
<tr>
<th>#</th>
<th>Deliverable</th>
<th>Timeline (CY)</th>
<th>DONE?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Virus construction, seed virus generation, pre-clinical evaluation</td>
<td>Q2 2017</td>
<td>✓</td>
</tr>
<tr>
<td>2</td>
<td>Manufacturing of Phase 1 and 2 CTM’s at Charles River Laboratories; Release testing</td>
<td>June – Nov 2017</td>
<td>✓</td>
</tr>
<tr>
<td>3</td>
<td>IND submission</td>
<td>Feb 2018</td>
<td>Initiated</td>
</tr>
<tr>
<td>4</td>
<td>Phase 1 - Monovalent</td>
<td>March 2018</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Phase 2 - Pentavalent</td>
<td>May 2018</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Phase 2a – Butantan Institute Bridging, Monovalent, Pentavalent</td>
<td>Pending Q4 2018</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Phase 2b – Butantan Institute</td>
<td>Pending 2019</td>
<td></td>
</tr>
</tbody>
</table>

 Courtesy: S. Whitehead, LVD
Modern mRNA Vaccine

- Synthetic mRNA can be used to deliver virtually any gene
- Novel chemistry enables mRNA to elude intracellular innate host immune responses
- Once in cell, acts like a native mRNA to express foreign gene
- Robust, protective immunological responses in animal models
- Needle and syringe delivery
- Pre-clinical and clinical evaluation of multiple candidates ongoing
Inactivated Zika Vaccines

• “Proof-of-concept” clinical lot of Zika Purified Inactivated Vaccine (ZPIV) manufactured by WRAIR based on JEV vaccine technology
• Formalin-inactivated, alum-adjuvanted
• NIAID and WRAIR conducting five Phase I clinical trials to evaluate safety and immunogenicity
• BARDA awarded development contracts to Sanofi and Takeda to manufacture and license an inactivated Zika vaccine
 • Currently, only Takeda is continuing development of their Zika vaccine
 • Takeda Phase I safety and immunogenicity in naïve and Flavi-seropositive ongoing
 • Sanofi vaccine candidate no longer being pursued but company is conducting a case definition study that is still supported

Adapted from AS Fauci/NIAID
Preliminary aggregate safety and immunogenicity results from three trials of a purified inactivated Zika virus vaccine candidate: Phase 1, randomised, double-blind, placebo-controlled clinical trials

Kayvon Modjarrad, Leyi Line, Sarah George, Kathryn E. Stephenson, et al.

- Formalin-inactivated, alum-adjuvanted vaccine
- Administered on days 1 and 29
- Data from 68 subjects who received 5 ug IM
- Mild to moderate adverse events
- 92% seroconverted by day 57
- Peak MN titers at day 43 exceeding protective titers seen in animal studies
PRESS RELEASE

Zika Virus: Themis Bioscience Initiates Worldwide First Study With Live Attenuated Recombinant Vaccine

Vienna, Austria, 11-Apr-2017 – A promising vaccine for the Zika virus is now being tested by Themis Bioscience GmbH, a specialized biotech company developing prophylactic vaccines against emerging tropical infectious diseases. After recent progress with the development of a Chikungunya vaccine the company succeeded in swiftly adapting their proprietary vaccine technology for their Zika vaccine program. This program is based on a live attenuated recombinant vaccine that promises a fast and effective immune response.
Key Challenges/Questions

Regulatory/Clinical
- What if existing disease incidence does not support evaluation of vaccine efficacy?
- Will immunological responses prevent congenital infections?

Funding/Commercialization
- How will funding gaps be filled to support licensure?
- Will the commercial market sustain a Zika vaccine?
THANK YOU

Contact us
www.hhs.gov/aspr/barada
barada@hhs.gov
www.Medicalcountermeasures.gov