

Centers for Disease Control and Prevention

Zika virus epidemiology update

Marc Fischer Arboviral Diseases Branch Division of Vector-Borne Diseases

February 8, 2016

Zika virus epidemiology

- First isolated from a monkey in Uganda in 1947
- Before 2007, only sporadic human disease cases reported from Africa and southeast Asia
- In 2007, first outbreak reported on Yap Island, Federated States of Micronesia
- From 2013–2015, >30,000 suspected cases reported from French Polynesia and other Pacific islands

Hayes et al. Emerg Infect Dis 2009; Duffy et al. N Eng J Med 2009; Cao-Lormeau et al. Emerg Infect Dis 2013.

Cumulative number of countries reporting mosquito-borne Zika virus transmission since 2007, by WHO region (as of Jan 18, 2017)

http://www.who.int/emergencies/zika-virus/situation-report/20-january-2017/en/

Zika virus in the Americas

- In May 2015, the first locally acquired cases in the Americas were reported in Brazil
- As of January 2017, local transmission reported in 50 countries or territories in the Americas
- Only countries without reported local transmission are Bermuda, Canada, Chile, and Uruguay

Locally transmitted Zika virus disease cases reported by country/territory in the Americas, 2015–2017 (as of Jan 12, 2017)

Country (N=50)	(N=738,783)*		
Brazil	342,459	(46%)	
Colombia	106,697	(14%)	
Venezuela	61,825	(8%)	
Puerto Rico	37,488	(5%)	
Martinique	36,692	(5%)	
Honduras	32,234	(4%)	
Guadeloupe	31,224	(4%)	
*270/ of concern lab confirmed			

*27% of cases are lab-confirmed

http://www.paho.org/hq/index.php?option=com_content&view=article&id=12390&Itemid=42090&Iang=en

Suspected and confirmed locally transmitted Zika virus disease cases reported in the Americas, 2015–2017 (as of Jan 12, 2017)

N=738,783 suspected and confirmed cases

Zika virus in the United States

- From 2007–2014, 14 Zika virus disease cases identified in US travelers
- With recent outbreaks in the Americas, cases among US travelers increased substantially
- Limited local mosquito-borne transmission identified in two states (Florida and Texas)
- Outbreaks in three US territories (Puerto Rico, US Virgin Islands, and American Samoa)

Duffy et al. N Eng J Med 2009; Hennessey et al. Am J Trop Med Hyg 2016; Armstrong et al. MMWR 2016; Walker et al. MMWR 2016; Likos et al. MMWR 2016; Dirlikov et al. MMWR 2016.

Laboratory-confirmed Zika virus disease cases reported to ArboNET by states or territories — United States, 2015–2017 (as of Jan 25, 2017)

	Stat (N=4,	tes 930)	Territ (N=35	ories ,784)
Travel-associated*	4,710	(96%)	140	(<1%)
Locally acquired	219	(4%)	35,644	(99%)
Laboratory acquired	1	(<1%)	0	(0%)

*Includes cases in travelers and their contacts with presumed sexual or in utero transmission, and one case with unknown route of person-to-person transmission.

State or territory of residence for reported Zika virus disease cases — United States, 2015–2017 (as of Jan 25, 2017)

State of residence for reported Zika virus disease cases — U.S. states, 2015–2017 (as of Jan 25, 2017)

	Travel associated	Locally acquired
State	(N=4,711)	(N=219)
New York	1,001 (21%)	0 (0%)
Florida	840 (18%)	213 (97%)
California	411 (9%)	0 (0%)
Texas	294 (6%)	6 (3%)
New Jersey	174 (4%)	0 (0%)
Pennsylvania	171 (4%)	0 (0%)
Maryland	129 (3%)	0 (0%)

Mosquito-borne Zika virus transmission in Florida

- Beginning in July 2016, sporadic, locally acquired cases identified in multiple counties in South Florida
- Active transmission identified in three small areas of Miami-Dade County
 - Recommendations for pregnant women to avoid travel to those areas and pregnant residents to be tested and followed
 - Intensive public health response, including aerial adulticide and larvicide applications, helped control the outbreaks
 - No evidence of ongoing, sustained local transmission

Likos et al. MMWR 2016; http://www.floridahealth.gov/newsroom/2016/10/101116-zika-update.html

Areas in Miami-Dade County with previous active Zika virus transmission

Mosquito-borne Zika virus transmission in Texas

- In November 2016, first case of local mosquito-borne Zika virus infection reported in Brownsville, Texas
- Area borders Mexico with frequent border crossings
- Active Zika virus transmission reported in Mexico near the US-Mexico border
- In December, CDC designated Brownsville a Zika cautionary (yellow) area
 - Recommendations for pregnant women to avoid travel to those areas and pregnant residents to be tested and followed
- As of January 25, six cases of local mosquito-borne transmission reported from the Brownsville area

Zika cautionary area in Brownsville, Texas

Brownsville, TX. Yellow shows areas where pregnant women should consider postponing travel.

https://www.cdc.gov/zika/intheus/texas-update.html

Numbers of reported Zika virus disease cases — U.S. territories, 2015–2017 (as of Jan 25, 2017)

Territory	Travel associated (N=126)	Locally acquired (N=33,712)
Puerto Rico	124 (98%)	32,848 (97%)
US Virgin Islands	2 (2%)	807 (2%)
American Samoa	0 (0%)	57 (1%)

Municipality of residence for reported Zika virus disease cases — Puerto Rico, 2015–2017 (as of Jan 26, 2017)

http://www.salud.gov.pr/Estadisticas-Registros-y-Publicaciones/Pages/VigilanciadeZika.aspx

Age group for reported Zika virus disease cases — US states and territories, 2015–2017 (as of Jan 25, 2017)

Month of illness onset for Zika virus disease cases — US states and territories, 2015–2017 (as of Jan 25, 2017)

Zika virus transmission and clinical manifestations

- RNA flavivirus related to dengue, yellow fever, Japanese encephalitis, and West Nile viruses
- Transmitted to humans primarily by Aedes (Stegomyia) species mosquitoes
- Typically causes asymptomatic infection or mild dengue-like illness
- Recent outbreaks identified new modes of transmission and clinical manifestations

Zika virus disease clinical course and outcomes

- Most infections asymptomatic
- Clinical illness usually mild
- Characterized by fever, rash, arthralgia, or conjunctivitis
- Symptoms last several days to a week
- Severe disease requiring hospitalization uncommon
- Fatalities rare

Duffy et al. N Engl J Med 2009; Walker et al. MMWR 2016; Armstrong et al. MMWR 2016; Dirlikov et al. MMWR 2016.

Clinical manifestations newly identified in 2015–2016

- Fetal loss
- Microcephaly and other congenital anomalies
- Guillain-Barré syndrome and other neurologic syndromes
- Thrombocytopenia

Meaney-Delman et al. MMWR 2016; Cauchemez et al. Lancet 2016; Rasmussen et al. N Eng J Med 2016; Moore et al. JAMA Pediatr 2016; de Araujo et al. Lancet Infect Dis 2016; Cao-Lormeau et al. Lancet 2016; Sharp et al. Clin Infect Dis 2016.

Non mosquito-borne modes of transmission

- Documented
 - Intrauterine resulting in congenital infection
 - Intrapartum from viremic mother to newborn
 - Sexual
 - Laboratory exposure
 - Blood transfusion
- Possible
 - Organ or tissue transplantation
 - Breast milk
 - Other body fluids

Risk of adverse outcomes of pregnancy

- Incidence and clinical spectrum of congenital Zika virus infection unknown
- Risk of fetal loss and congenital anomalies appear to be greater with infections early in pregnancy
- Estimated 1–13% risk of congenital microcephaly following Zika virus infection during the first trimester of pregnancy

Johansson et al. N Engl J Med 2016; Cauchemez et al. Lancet 2016; Rasmussen et al. N Eng J Med 2016; Moore et al. JAMA Pediatr 2016.

Microcephaly or other CNS malformations possibly associated with Zika virus infection reported to WHO (as of Jan 20, 2017)*

Country/territory (N=29)	untry/territory (N=29) (N=2,635)	
Brazil	2,366	(90%)
Colombia	78	(3%)
United States	41	(2%)
Dominican Republic	22	(1%)
Martinique	18	(1%)
French Guiana	16	(1%)
Guatemala	15	(1%)
22 other countries/territories	79	(3%)

*Includes cases acquired in other countries

http://www.who.int/emergencies/zika-virus/situation-report/20-january-2017/en/

Clinical findings in infants with congenital Zika virus infection

Brain anomalies

- Subcortical calcifications
- Ventriculomegaly
- Abnormal gyral patterns
- Corpus callosum agenesis
- Cerebellar hypoplasia

Ocular anomalies

- Microphthalmia
- Cataracts
- Chorioretinal atrophy
- Optic nerve hypoplasia

Neurologic sequelae

- Hypertonia/hypotonia
- Irritability
- Tremors
- Swallowing dysfunction
- Hearing loss
- Visual impairment

Congenital contractures

- Clubfoot
- Arthrogryposis

Zika virus perinatal transmission

- Two case reports from French Polynesia
- Both women developed mild rash illness within 3 days of delivery
- One infant developed a transient rash and mild thrombocytopenia at 3 days of life
- Second infant remained asymptomatic
- Both mothers and infants had Zika virus RNA in serum
- Newborns had otherwise unremarkable clinical course

Zika virus sexual transmission

- Identified in sexual partners with discordant travel history
- First report in 2011 in returning traveler from Senegal
- In 2016, sexually transmitted cases reported from 12 countries, including 38 cases in the United States
- Most reported cases result from men with symptomatic illness transmitting to their female or male partner
 - -One report of transmission from a woman to a man
 - -Two reports of transmission from asymptomatic men

Foy et al. Emerg Infect Dis 2011; Hills et al. MMWR 2016; Russell et al. Clin Infect Dis 2016; Davidson et al. MMWR 2016; Brooks et al. MMWR 2016; Freor et al. Euro Surveill 2016.

Zika virus in semen and vaginal fluid

- Zika viral RNA detected in semen up to 6 months after illness onset and in vaginal fluid up to 2 weeks after illness onset
- Zika virus cultured from semen up to 70 days after illness onset
- Sexual transmission reported up to 40 days after illness onset in the transmitting partner
- Data from case reports and may not reflect true incidence or risk of transmission

Barzon et al. Euro Surveill 2016; D'Ortenzio et al. N Eng J Med 2016; Arsuaga et al. Lancet Infect Dis 2016; Freor et al. Euro Surveill 2016; Prisant et al. Lancet Infect Dis 2016; Nicastri et al. Emerg Infect Dis 2016; Dudley et al. Nature Comm 2016.

Impact of Zika virus sexual transmission

- Incidence, duration, and risk factors for sexual transmission unknown
- One modeling study from Brazil suggested the apparent increased incidence of disease in women is due to sexual transmission
- Another model determined that sexual transmission is not a significant factor in driving an outbreak
- Two prospective cohort studies in United States ongoing to evaluate frequency and duration of Zika virus RNA and live virus in semen

Coehlo et al. bioRxiv 2016; Yakob et al. Lancet Infect Dis 2016.

Transfusion-transmitted Zika virus infections

- Zika virus RNA identified in 42 (3%) of 1,505 blood donors in French Polynesia in 2013–2014; none of the products were transfused
- In 2016, at least 3 cases of transfusion transmitted Zika virus infections have been reported from Brazil
- In February 2016, FDA issued recommendations to reduce the risk of transfusion-transmitted Zika virus in the United States
- From April–December, 2016, routine screening identified Zika virus RNA in 360 (0.6%) of 54,588 blood donations in Puerto Rico
- In August 2016, FDA recommended routine Zika virus screening of all blood donations in the United States

Musso et al. Euro Surveill 2014; Lanteri et al. Transfusion 2016; Motta et al. N Engl J Med 2016; Kuehnert et al. MMWR 2016.

Zika virus laboratory transmission

- From 1964–1980, there were 4–6 reports of probable
 Zika virus infections due to laboratory exposure
- In 2016, one report of confirmed Zika virus infection following a needle stick injury in US researcher
 - Mild symptomatic illness without complications

Simpson et al. Trans Roy Soc Trop Med Hyg 1964; Filipe et al. Archiv fur gesante virusforschung 1973; ACAV et al. Am J Trop Med Hyg 1980

Zika virus in breast milk

- Zika virus transmission through breast milk has not been documented
- Zika virus RNA detected in breast milk collected several days after onset of illness in two women with perinatal transmission in French Polynesia
 - Viral culture negative on breast milk
- Zika virus RT-PCR and culture positive on breast milk collected 4 days after onset of illness in a woman in New Caledonia
 - Infant asymptomatic and no laboratory evidence of infection
- Benefits of breastfeeding outweigh theoretical risk of transmission

Zika virus transmission from other body fluids

- Zika virus RNA has been detected in saliva and tears
- One case of possible person-to-person transmission reported from Utah
- Index patient developed fatal septic shock and had a level of viremia approximately 100,000 times higher than average
- Zika virus infection diagnosed in a family member who had close contact (i.e., kissing and touching) with the index case in days prior to death
- No specific source or mode of transmission was identified
- No additional infections identified in 18 other family members or healthcare workers who cared for the patient

Guillain-Barré syndrome following Zika virus infection

- First described in French Polynesia during 2013–2014 outbreak
- Additional 19 countries have now reported at least one Guillain-Barré syndrome case with laboratory evidence of Zika virus infection
- 13 GBS cases reported from US states and 50 from Puerto Rico
- Estimated 1.6 cases of Guillain-Barré syndrome per 10,000 Zika virus infections (95% Cl 1.1–2.6 per 10,000)
- Outcomes and increased risk in older adults appear similar to Guillain-Barré syndrome due to other causes

Oehler et al. Euro Surveill 2014; Dirlikov. Emerg Infect Dis 2016; Dirlikov. MMWR 2016 http://www.who.int/emergencies/zika-virus/situation-report/8-december-2016/en/ http://www.cdc.gov/zika/geo/united-states.html

Neurologic disease with non-congenital Zika virus infections

- Rare reports of encephalopathy, meningoencephalitis, myelitis, and uveitis
- Reports of peripheral paresthesias, with or without Guillain-Barré syndrome

Roze et al. Eurosurv 2016; Carteaux et al. N Eng J Med 2016; Mecharles et al. Lancet 2016; Fortado et al. N Eng J Med 2016

Risk of thrombocytopenia and hemorrhage

- Estimated 1% of symptomatic Zika virus disease cases may have thrombocytopenia (platelet count <100,000)
- Rare reports of severe thrombocytopenia with hemorrhage or septic shock, including at least two fatal cases

Sharp et al. Clin Infect Dis 2016; Dirlikov et al. MMWR 2016; Brent et al. MMWR 2016.

Zika virus treatment and prevention

- Reduce mosquito exposure through vector control and personal protective measures (e.g., insect repellent and air conditioning)
- Pregnant women should not travel to areas with local transmission and take steps to protect against possible sexual transmission
- No vaccine or medication to prevent or treat infection or disease
 - -Numerous candidate vaccines being evaluated
 - -Coordinated US government effort to facilitate development
 - Targeted use will depend on ongoing incidence of disease and complications, and vaccine characteristics (e.g., safety, efficacy, and duration of protection)

For more information, contact CDC 1-800-CDC-INFO (232-4636) TTY: 1-888-232-6348 www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

