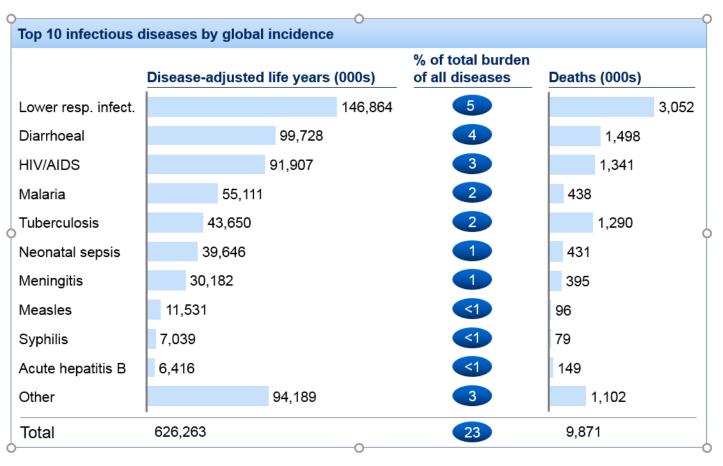
# Refueling the innovation engine in vaccines

NVAC Discussion 7 June 2016

CONFIDENTIAL AND PROPRIETARY Any use of this material without specific permission of McKinsey & Company is strictly prohibited

#### McKinsey&Company

#### McKinsey is currently undertaking an effort to understand the challenges and solutions to vaccine innovation


#### **Questions:** Early insights: Are we **progressing** to address unmet Unmet needs in vaccine-preventable disease persist needs in vaccination globally? On the surface, the industry looks to be thriving If not, what are the challenges? However, a closer look suggests challenges What are the solutions to Three barriers are limiting innovation accelerate needed innovations and create a sustainable Targeted economic and technical solutions are needed industry?

#### These perspectives informed by interactions across vaccine space



There are persisting unmet needs in vaccine-preventable disease that call for improved and new product innovations

# Vaccine-preventable diseases today cause >600 million DALYs and make up ~23% of the burden across all diseases



Text Version

# These unmet needs call for innovations on both existing vaccines and new products



Improve existing vaccines to address unmet needs e.g. in efficacy, duration of protection, ease of use

#### **Examples**

- Improved antigens e.g.
  - Pertussis
  - Flu
  - Measles
- Combination vaccines
- Delivery technologies

#### 2 Create new vaccines

to address diseases for which burdens persist and prophylaxis can play an important role

- HIV
- RSV
- Ebola

# Several existing vaccines still fall short on fully addressing public health needs

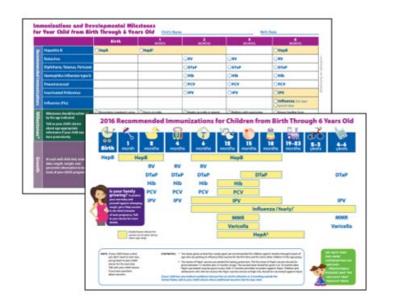
|                       | IncidenceDeaths perThousandsThousands |     | Improvement opportunities                                                                               |
|-----------------------|---------------------------------------|-----|---------------------------------------------------------------------------------------------------------|
| Seasonal<br>Influenza | 4,000                                 | 375 | <ul> <li>Higher efficacy</li> <li>Broader strain protection</li> </ul>                                  |
| Typhoid               | 1,198                                 | 161 | <ul> <li>Efficacy can be less than 50%</li> </ul>                                                       |
| Rotavirus             | 111,402                               | 453 | <ul> <li>Greater efficacy required (current<br/>efficacy around 70%)</li> </ul>                         |
| Pertussis             | 2,533                                 | 61  | Immune waning of vaccine                                                                                |
| HPV                   | 3,109                                 | 236 | <ul> <li>Additional serotypes could be added,</li> <li>Fewer doses would increase compliance</li> </ul> |

Text Version

1 Vaccines where there is a need to improve overall efficacy/effectiveness of the vaccine

2 Vaccines which are only against a subset of serotypes/strains, or where the pathogen mutates frequently

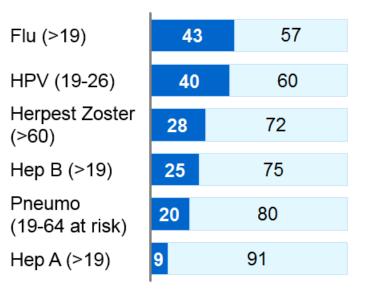
3 Vaccines where the formulation needs to be changed or the doses need to be reduced (e.g., moving from 3 to 1 doses)


1

Low

1 Increasing complexity in patient diversity and program delivery also raises the need for product improvements

#### **Pediatrics**


Extensive immunization schedule



#### Adult

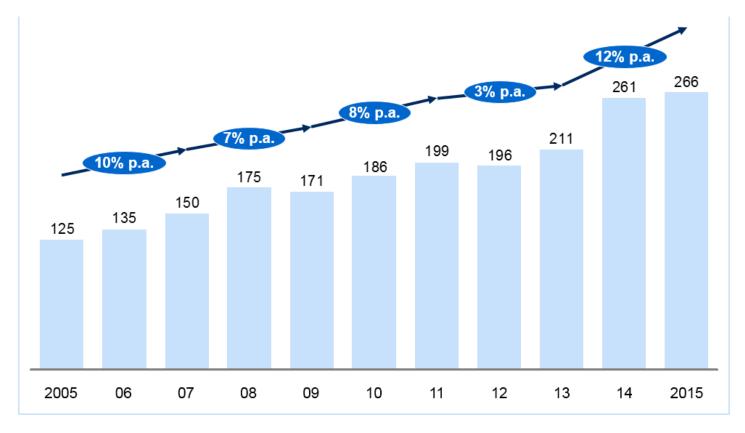
Limited penetration and uptake

Vaccinated Unvaccinated



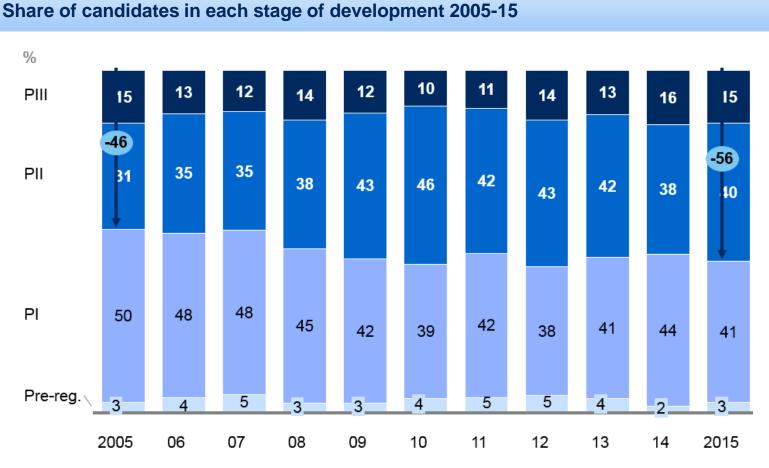
How can innovations make the schedule simpler and more efficient for parents? E.g. through more combination vaccines? What innovations can get vaccines to more adolescents, adults, expecting mothers, and elderly? E.g. new delivery devices?

2 There are several high-burden and high-priority diseases for which we do not yet have vaccines on the market


|                          |                 | Incidence (000s) | Deaths per year (0 | 00s)  |
|--------------------------|-----------------|------------------|--------------------|-------|
|                          | HIV             | 29,231           |                    | 1,341 |
|                          | Flu (universal) | 4,000            | 375                |       |
| High                     | Norovirus       | 7,634            | 228                |       |
| income                   | Syphilis        | 315              | 137                |       |
| endemic                  | RSV             | 170              | 10                 |       |
|                          | C. difficile    | 250              | 14                 |       |
|                          | S. aureus       | 75               | 11                 |       |
|                          | Shigellosis     | 100,000          | 100                |       |
|                          | Tuberculosis    | 12,112           |                    | 1,290 |
| Low<br>income<br>endemic | Cholera         | 2,700            | 82                 |       |
|                          | West Nile       | 2                | <1                 |       |
|                          | Ebola           | 29               | 11                 |       |
|                          | Zika            | 180              | <1                 |       |

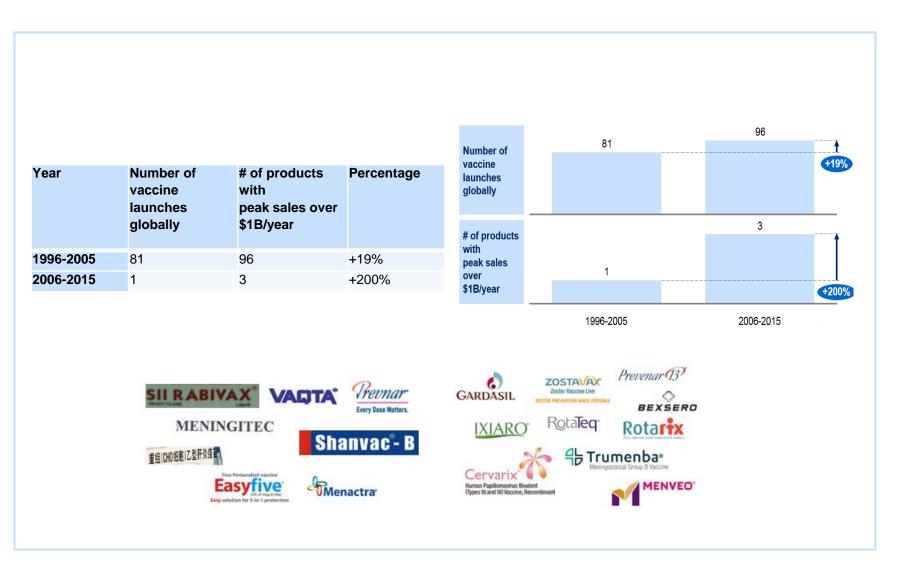
Text Version

At first glance, the industry looks to be thriving – pipelines are robust, and revenues are growing

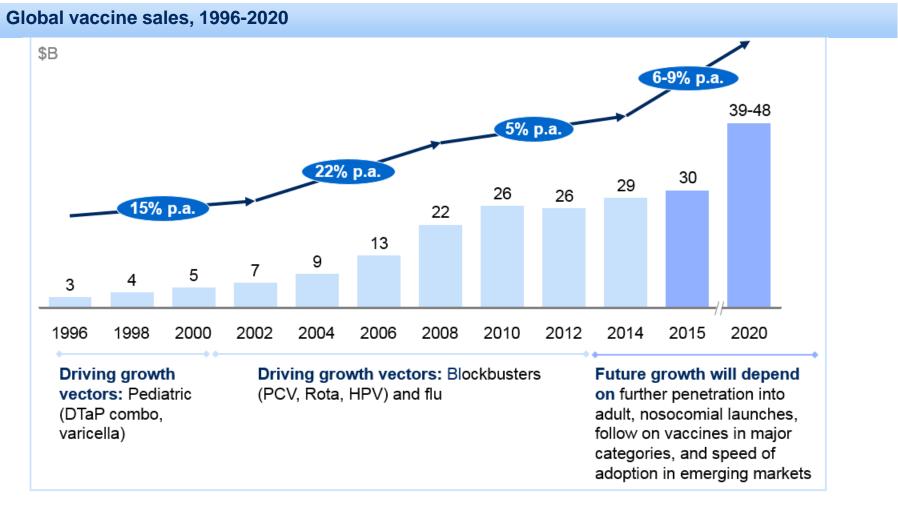

### The vaccine product pipeline has been growing at a healthy rate over the last decade

Number of vaccines in development globally (phase I to pre-registration), 2005-15




Text Version

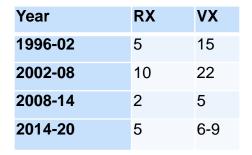
#### We have a higher proportion of late stage vaccine candidates now than we did in 2005

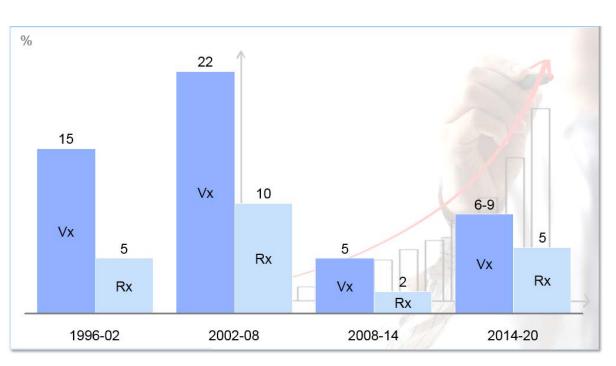



**Text Version** 

### As the pipeline has continued to grow, so have the number of new product launches worldwide




### Global industry growth has also kept pace, and is expected to continue to grow at close to double-digits through 2020

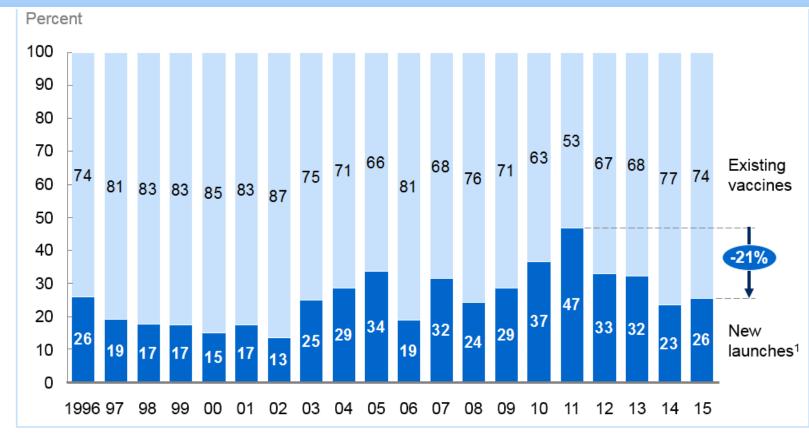



#### Text Version

## Growth in the global vaccine market has and will continue to out-pace that of the rest of the pharma industry

#### Annual growth rates





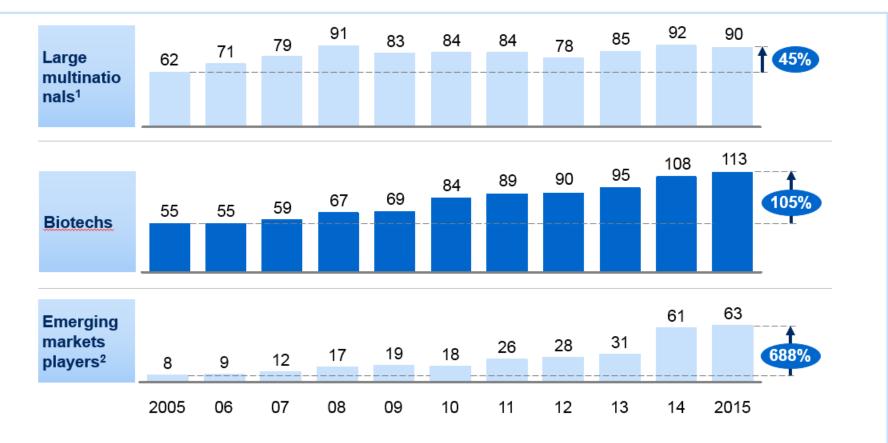

However, looking closer, signals suggest that there are real challenges to innovation





### The majority of the market growth has come from existing vaccines rather than new launches



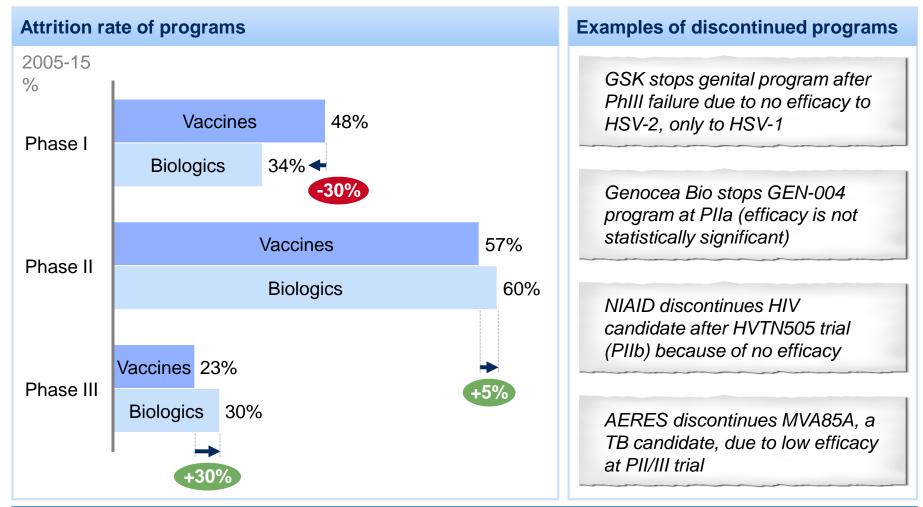

#### Global vaccine sales, 1996-2015

Text Version

1 Defined as any vaccine that received FDA approval in the proceeding five years

# Biotechs are driving most early stage programs, but facing limitations in the absorptive capacity of big pharma to take innovations to market

#### Number of vaccine development programs globally




#### Text Version

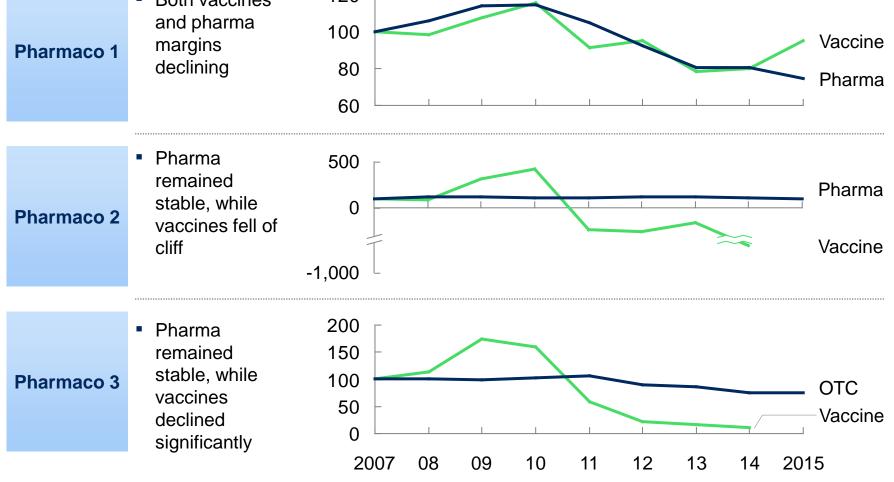
1 Referring to Pfizer, Merck, Sanofi, GSK and Novartis (pre-2014), Takeda, CSL, Abbott, J&J, AZ, Baxter, including in-licensed products 2 Including Japan

SOURCE: Pharmaproject 2015

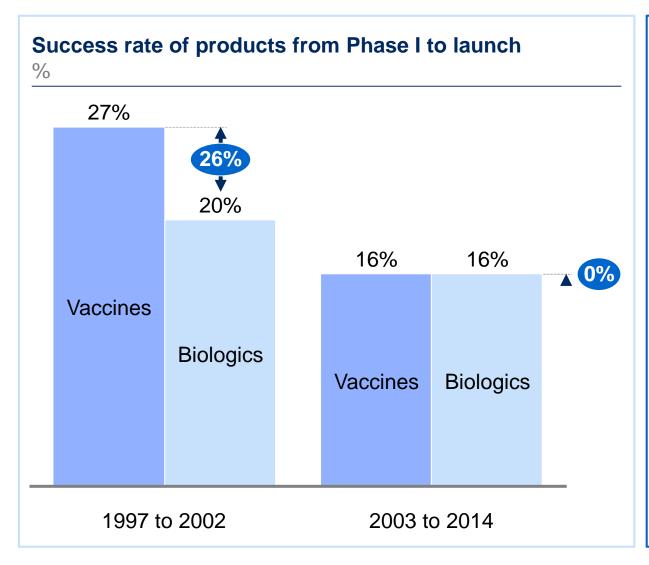
# Vaccine candidates are killed earlier than biologics, and we get fewer shots on goal



Attrition in Phase I drive by 3 factors: (1) Limited funding, especially for Phase II (2) biologic complexity of candidates (3) evidence that identifies unviable candidates earlier than for biologics


Three factors are challenging the underlying business model for vaccines innovation

08951014


0.7853H

# Vaccines businesses are on a trend of declining profitability, placing increasing pressure on the economics





# Relative vaccine economics have been changing, with lower returns on investment as success rates converge with biologics



- Vaccines have peak revenues of up to low digit billion (e.g. the blockbuster Prevnar13 - \$6B, Gardasil - \$2B)
- Biologics conversely can have peak revenues of up to double digit billion (e.g. Humira \$19B, Enbrel \$13B)
- The convergence of success rates in vaccines and biologics makes vaccines less attractive for investment

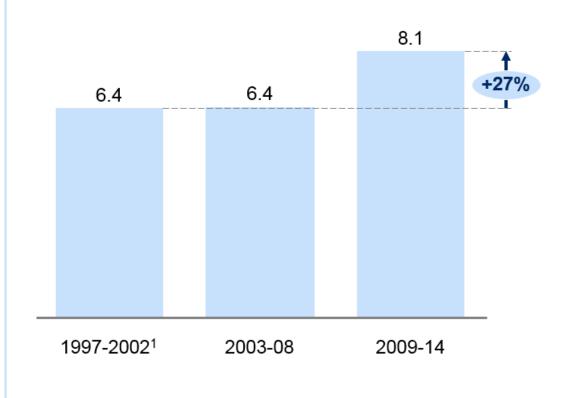
#### We see three potential drivers challenging the business model



1 Underlying R&D and manufacturing requirements for vaccines are becoming more demanding and creating a higher hurdle rate for innovations



2 Commercial potential of new innovations is uncertain, given open questions on commercial models, regulatory and policy approvals, and patient accessibility




3 Technical challenges are reducing the probability of success and elevating the investment risks associated with product innovations

# 1 Time to market for vaccines is increasing, implying increasing costs and creating potential economic uncertainty







- Vaccine trials are getting longer. This driven both by more advanced technology, and increased Regulatory hurdles
- Recruiting participants is becoming more difficult, especially as trials grow larger (e.g., from variable prevalence of diseases or going head to head) which increases the time to launch

1 Anti-infective vaccine products including prophylactic vaccines and recombinant vaccines as defined by Pharmaprojects. Note that recombinant vaccine group may contain some therapeutic vaccines.

### Shortages, recalls and other manufacturing challenges and required investments add additional risks to the economics

Selected examples



# 2-3 Commercial attractiveness and technical feasibility vary by vaccine and vaccine archetype

| Commercial attractiveness               |                                                                                                                                 | Technical Feasibility               |                                                                                                                                                                             |                                             |  |  |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--|--|
| Assessment of commercial attractiveness |                                                                                                                                 | Assessment of technical feasibility |                                                                                                                                                                             | Example of<br><i>challenging</i><br>vaccine |  |  |
| Volume                                  | <ul> <li>Is there a large population<br/>at risk? Does the disease<br/>have a high incidence?</li> </ul>                        |                                     | <ul> <li>Does the pathogen trigger<br/>antibody response and<br/>confer immunity post-<br/>infection?</li> </ul>                                                            | ▪ HIV                                       |  |  |
| Price                                   | <ul> <li>Are people or payors<br/>willing to pay for the<br/>vaccine?</li> </ul>                                                | Adaptability of pathogen            | <ul> <li>Is there high antigenic<br/>variability or does the<br/>pathogen mutate/<br/>evolve quickly?</li> </ul>                                                            | <ul> <li>Universal<br/>flu</li> </ul>       |  |  |
| Price                                   | <ul> <li>Are there other vaccines<br/>or treatments on the<br/>market?</li> </ul>                                               | Strength of<br>immune<br>response   | <ul> <li>Can an adequate immune<br/>response be achieved? Are<br/>adjuvants necessary and<br/>do they work?</li> </ul>                                                      | <ul> <li>Pertussis</li> </ul>               |  |  |
| Ability to<br>access<br>market          | <ul> <li>Are there existing commercial channels?</li> <li>If not, is there a way to make the commercial access work?</li> </ul> | Clinical<br>trials                  | <ul> <li>How easy are clinical trials<br/>(i.e., finding population at<br/>risk, diagnosing, prevalence<br/>of disease)? Is there a<br/>correlate of protection?</li> </ul> |                                             |  |  |

# The low-hanging fruit no longer exists – needed innovations will be less commercially attractive and less technically feasible than in the past

#### **ILLUSTRATIVE**

| High | <ul> <li>Recent blockbusters</li> <li>Pneumococcal pneumonia</li> <li>HPV</li> <li>Rotavirus</li> <li>Varicella/Shingles</li> <li>Dengue</li> </ul> |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                                                                                                                                                     |
| Low  | High<br><b>Technical feasibility</b>                                                                                                                |

**Commercial attractiveness** 

# Five vaccine archetypes carry distinct profiles for commercial potential and technical feasibility

| Archetype                  | Description                                                                                                                                                                                                                | Examples                                                                            |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 1 High income + nosocomial | <ul> <li>Moderate technical feasibility</li> <li>Nosocomial: market potential high, but<br/>commercial model/indication unclear</li> <li>Others: Moderate commercial potential and mix of<br/>commercial models</li> </ul> | <ul><li>C Diff</li><li>Staph</li><li>Norovirus</li></ul>                            |
| 2 Incremental improvements | <ul> <li>Uncertain commercial value for incremental improvements, especially on price</li> <li>Moderate-high technical feasibility</li> </ul>                                                                              | <ul><li>Pertussis</li><li>Typhoid</li><li>Measles</li></ul>                         |
| 3 Emerging<br>threats      | <ul> <li>Limited reliable and large-scale commercial potential e.g. vaccine only stockpiled</li> <li>Moderate technical feasibility</li> </ul>                                                                             | <ul><li>Ebola</li><li>Zika</li><li>MERS</li></ul>                                   |
| 4 Potential blockbusters   | <ul> <li>High commercial potential – large burden of disease and large potential patient pools</li> <li>Low-moderate technical feasibility</li> </ul>                                                                      | <ul> <li>HIV</li> <li>Improved/universal Flu</li> <li>RSV</li> <li>Hep C</li> </ul> |
| 5 Low income               | <ul> <li>Moderate commercial potential and mix of commercial models</li> <li>Low-moderate technical feasibility</li> </ul>                                                                                                 | <ul><li>Malaria</li><li>TB</li></ul>                                                |

There are several potential solutions to re-fuel the vaccines innovation engine

### Initial thoughts on potential solutions

| 1 | High income<br>and<br>nosocomial | <ul> <li>Earlier clarity on market demand – published TPPs on desired product profiles and pricing?</li> <li>Greater certainty on use case and potential recommendation – ACIP "advance recommendation"?</li> <li>Further investment in infrastructure and information systems to track adult immunizations</li> </ul> |
|---|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | Incremental<br>improvements      | <ul> <li>Clear, aligned articulation of value placed on antigen<br/>improvements Clearer pricing and market signals?</li> <li>More specific guidance on formulation, presentation and<br/>delivery innovations desired – TPPs?</li> </ul>                                                                              |
| 3 | Emerging<br>threats              | <ul> <li>Improve economic incentives – push investments to create a development fund for emerging threats?</li> <li>Develop technology platforms that can flexibly accelerate innovation – e.g. shared emergency platform?</li> </ul>                                                                                  |
| 4 | Potential blockbusters           | Improve openness and data-sharing to overcome technical<br>challenges – New models of partnerships on early stage work?                                                                                                                                                                                                |
| 5 | Low income                       | Greater clarity on value of longer-term product innovations –<br>TPPs and pricing signals?                                                                                                                                                                                                                             |

### NVAC could play a lead role in some of these potential solutions

|   | High income                      | Earlier clarity on market demand – published TPPs on desired<br>product profiles and pricing?                                                                                                                                             |
|---|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | High income<br>and<br>nosocomial | Greater certainty on use case and potential recommendation<br>– ACIP "advance recommendation"?                                                                                                                                            |
|   | nosocoma                         | Further investment in infrastructure and information systems to<br>track adult immunizations                                                                                                                                              |
| 2 | Incremental<br>improvements      | <ul> <li>Clear, aligned articulation of value placed on antigen<br/>improvements Clearer pricing and market signals?</li> <li>More specific guidance on formulation, presentation and<br/>delivery innovations desired – TPPs?</li> </ul> |
|   | Emerging                         | Improve economic incentives – push investments to create a development fund for emerging threats?                                                                                                                                         |
| 3 | threats                          | Develop technology platforms that can flexibly accelerate innovation – e.g. shared emergency platform?                                                                                                                                    |
| 4 | Potential blockbusters           | Improve openness and data-sharing to overcome technical<br>challenges – New models of partnerships on early stage work?                                                                                                                   |
| 5 | Low income                       | Greater clarity on value of longer-term product innovations –<br>TPPs and pricing signals?                                                                                                                                                |

#### **Questions for discussion**

What are the most salient challenges to solve across vaccine types? Within specific archetypes?

- What solutions will help us accelerate needed innovations?
- What are the roles of industry, government and policymakers, and research and academia in accelerating innovation? In particular, what is the relevant role for NVAC?

### **Top 10 infectious diseases by global incidence**

| Diseases            | Top 10 infectious diseases by global incidence | % of total burden of all diseases | Deaths (000s) |
|---------------------|------------------------------------------------|-----------------------------------|---------------|
| Lower resp. infect. | 146,864                                        | 5                                 | 3,052         |
| Diarrhoeal          | 99,728                                         | 4                                 | 1,498         |
| HIV/AIDS            | 91,907                                         | 3                                 | 1,341         |
| Malaria             | 55,111                                         | 2                                 | 438           |
| Tuberculosis        | 43,650                                         | 2                                 | 1,290         |
| Neonatal sepsis     | 39,646                                         | 1                                 | 431           |
| Meningitis          | 30,182                                         | 1                                 | 395           |
| Measles             | 11,531                                         | <1                                | 96            |
| Syphilis            | 7,039                                          | <1                                | 79            |
| Acute hepatitis B   | 6,416                                          | <1                                | 149           |
| Other               | 94,189                                         | 3                                 | 1,102         |
| Total               | 626,263                                        | 23                                | 9,871         |

# Several existing vaccines still fall short on fully addressing public health needs

| Vaccines              | Incidence<br>Thousands | Deaths per year<br>Thousands | Improvement opportunities                                                                               |
|-----------------------|------------------------|------------------------------|---------------------------------------------------------------------------------------------------------|
| Seasonal<br>Influenza | 4,000                  | 375                          | <ul><li>Higher efficacy</li><li>Broader strain protection</li></ul>                                     |
| Typhoid               | 1,198                  | 161                          | • Efficacy can be less than 50%                                                                         |
| Rotavirus             | 11,402                 | 453                          | <ul> <li>Greater efficacy required<br/>(current efficacy around 70%)</li> </ul>                         |
| Pertussis             | 2,533                  | 61                           | Immune waning of vaccine                                                                                |
| HIV                   | 3,109                  | 236                          | <ul> <li>Additional serotypes could be added,</li> <li>Fewer doses would increase compliance</li> </ul> |

### High and Low Endemic Diseases

|                     | Diseases        | Incidence | Deaths Per  |
|---------------------|-----------------|-----------|-------------|
|                     |                 | (000s)    | Year (000s) |
| High Income Endemic |                 |           |             |
|                     | HIV             | 29,231    | 1,341       |
|                     | Flu (universal) | 4,000     | 375         |
|                     | Norovirus       | 7,634     | 228         |
|                     | Syphilis        | 315       | 137         |
|                     | RSV             | 170       | 10          |
|                     | C. difficile    | 250       | 14          |
|                     | S. aureus       | 75        | 11          |
|                     |                 |           |             |
| Low Income Endemic  |                 |           |             |
|                     | Shigellosis     | 100,000   | 100         |
|                     | Tuberculosis    | 12,112    | 1,290       |
|                     | Cholera         | 2,700     | 82          |
|                     | West Nile       | 2         | <1          |
|                     | Ebola           | 29        | 11          |
|                     | Zika            | 180       | <1          |

# Number of vaccines in development globally (phase I to pre-registration), 2005-15

| Year 2005-15 | Number of Vaccines in development globally | phase I to pre-registration |
|--------------|--------------------------------------------|-----------------------------|
| 2005         | 125                                        | 10% p.a                     |
| 2006         | 135                                        | 10% p.a                     |
| 2007         | 150                                        | 10% p.a                     |
| 2008         | 175                                        | 7% p.a                      |
| 2009         | 171                                        | 7% p.a                      |
| 2010         | 186                                        | 8% p.a                      |
| 2011         | 199                                        | 8% p.a                      |
| 2012         | 196                                        | 3% p.a                      |
| 2013         | 211                                        | 3% p.a                      |
| 2014         | 261                                        | 12% p.a                     |
| 2015         | 266                                        | 12% p.a                     |

|         | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
|---------|------|------|------|------|------|------|------|------|------|------|------|
| PII     | 15   | 13   | 12   | 14   | 12   | 10   | 11   | 14   | 13   | 16   | 15   |
| PII     | 31   | 35   | 35   | 38   | 43   | 46   | 42   | 43   | 42   | 38   | 40   |
| PI      | 50   | 48   | 48   | 45   | 42   | 39   | 42   | 39   | 41   | 44   | 41   |
| Pre-reg | 3    | 4    | 5    | 3    | 3    | 4    | 5    | 5    | 4    | 2    | 3    |

#### Share of candidates in each stage of development 2005-15

Note:

There was a -46 drop from PIII to PII in 2005

There was a -56 drop from PII to PII in 2015

#### Global vaccine sales, 1996-2020

| Year | Global vaccine sales | P.A      |
|------|----------------------|----------|
| 1996 | 3                    | 15% p.a  |
| 1998 | 4                    | 15% p.a  |
| 2000 | 5                    | 15% p.a  |
| 2002 | 7                    | 15% p.a  |
| 2004 | 9                    | 22% p.a  |
| 2006 | 13                   | 22% p.a  |
| 2008 | 22                   | 22% p.a  |
| 2010 | 26                   | 5% p.a   |
| 2012 | 26                   | 5% p.a   |
| 2014 | 29                   | 5% p.a   |
| 2015 | 30                   | 6-9% p.a |
| 2020 | 39-48                | 6-9% p.a |

1996 -2000

Driving growth vectors: Pediatric (DTaP combo, varicella)

2002-2012

Driving growth vectors: Blockbusters (PCV, Rota, HPV) and flu

2014-2020

**Future growth will depend on** further penetration into adult, nosocomial launches, follow on vaccines in major categories, and speed of adoption in emerging markets

### Global vaccine sales, 1996-2015

|                      | 1996 | 1997 | 1998 | 1999 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
|----------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| New<br>launches1     | 26   | 19   | 17   | 17   | 15   | 17   | 13   | 25   | 29   | 34   | 19   | 32   | 24   | 29   | 37   | 47   | 33   | 32   | 23   |
| Existing<br>vaccines | 74   | 81   | 83   | 83   | 85   | 83   | 87   | 75   | 71   | 66   | 81   | 68   | 76   | 71   | 63   | 53   | 67   | 68   | 77   |

### Number of vaccine development programs globally

| Programs                                    | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
|---------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|
| Large<br>multinationals <sup>1</sup>        | 62   | 71   | 79   | 91   | 83   | 84   | 84   | 78   | 85   | 92   | 90   |
| Biotechs                                    | 55   | 55   | 59   | 67   | 69   | 84   | 89   | 90   | 95   | 108  | 113  |
| Emerging<br>markets<br>players <sup>2</sup> | 8    | 9    | 12   | 17   | 19   | 18   | 26   | 28   | 31   | 61   | 63   |