

Microbiome Live Biotherapeutics as a Novel Approach to Treat Infectious and Inflammatory Diseases

Matthew Henn, PhD EVP, Chief Scientific Officer

PACCARB – February 27, 2020

Mission To transform the lives of patients with revolutionary microbiome therapeutics

Location

Cambridge, MA

Clinical Assets Advanced drug pipeline with Phase 3 & Phase 2 programs

Platform

Platforms enable early discovery through GMP manufacturing of microbiome therapeutics Employees 130+

Seres is developing a novel drug modality that modulates the gut microbiome

Ecobiotic[®] Live Microbiome Biotherapeutics are encapsulated consortia of commensal bacteria with specific pharmacologic properties

Consortia capture breadth of phylogenetic & functional diversity in gut

Designed to target inflammatory & immunological disease pathways simultaneously

Mechanisms includes microbial engraftment in GI tract to restructure the microbiome

Formulated for oral delivery using current Good Manufacturing Practices (cGMP)

Drugs are designed to target therapeutic microbe-microbe & microbe-host functional interactions in the human gut

Reverse Translation Drug Discovery & Development Platform enables building of portfolio based on key learnings across programs

Human 'Proof of Concept' Phase 2: SER-109 for the reduction of *C. difficile* recurrence

Early engraftment of SER-109 strains was associated with non-recurrence

Increased engraftment was associated with increased production of secondary bile acids

McGovern, Ford, Henn et al. (in revision)

Human 'Proof of Concept' Phase 1b: SER-287 for the treatment of mild-moderate ulcerative colitis

Preconditioning with vancomycin followed by daily dosing of SER-287 was associated with clinical remission

Microbially-mediated metabolites that modulate host inflammation & barrier integrity are associated with SER-287 treatment and clinical outcome

Henn et al. (in revision)

How does the gastrointestinal (GI) microbiome impact antibiotic resistant infection?

 The GI tract is home to trillions of bacterial cells; a healthy intact microbiome is essential to preventing colonization with pathogens.

> Suau et al, Appl Environ Microbiol. 1999 Kim et al, Nature, 2019 Caballero et al, Cell Host & Microbe, 2017 Pamer, E., Science 2016

How does the gastrointestinal (GI) microbiome impact antibiotic resistant infection?

- The GI tract is home to trillions of bacterial cells; a healthy intact microbiome is essential to preventing colonization with pathogens.
- (2) Antibiotic resistant & tolerant bacteria rapidly expand in the absence of commensals resulting in domination by a few species.

Ubeda et al, J.Clin Invest 2010 Taur et al, Clin Infect Dis, 2012

9 - Seres Therapeutics, Inc. © 2020

How does the gastrointestinal (GI) microbiome impact antibiotic resistant infection?

- The GI tract is home to trillions of bacterial cells; a healthy intact microbiome is essential to preventing colonization with pathogens.
- (2) Antibiotic resistant & tolerant bacteria rapidly expand in the absence of commensals resulting in domination by a few species.
- (3) Domination with multidrug resistant organisms (MDRO) in populations with increased intestinal permeability has been associated with increased risk of bacteremia.

Tamburini et al, Nat Med 2018

Ecobiotic[®] live biotherapeutics may disrupt this path and represent a novel approach to combating antibiotic resistance

Results from Seres SER-109 Phase 1 trial

SER-109 engraftment resulted in reduction of carriage of antibiotic resistance genes

Results from Seres SER-109 Phase 2 trial

Seres is leveraging clinical insights to design Ecobiotic[®] live biotherapeutics as a novel solution to MDRO infection

Designed to prevent infection through decolonization & barrier restoration

- Defined consortia of laboratory-grown bacteria
- Consortia Design: Leverages insights on species and target pathways from SER-109 & SER-287 trials to define compositions of interest
- **Consortia Screening**: *in vivo* & *in vitro* models of VRE (shown), CRE, epithelial barrier integrity, & host immunity

Program supported by CARB-X

11 - Seres Therapeutics, Inc. © 2020

>99.99% in VRE titer Davs After VRE Challenge Vancomycin Resistant Enterococcus (VRE)

Lead candidate can decolonize VRE (data shown) & CRE in vivo

VRE

Inoc.

Abx

101

1010.

10

10

104

 10^{3}

Test Article Dosed

CFU/g Feces 107

VRE

Pbo

Lead Candidate

Designed to prevent infection through decolonization & barrier restoration

- Defined consortia of laboratory-grown ۰ bacteria
- **Consortia Design:** Leverages insights ٠ on species and target pathways from SER-109 & SER-287 trials to define compositions of interest
- Consortia Screening: in vivo & in vitro models of VRE (shown), CRE, epithelial barrier integrity, & host immunity

Program supported by CARB-X

Conclusions

- (1) Clinical studies support potential to use microbiome live biotherapeutics to modulate host inflammation/immunity and to target infection.
- (2) Antibiotic resistant infections can derive from reservoirs of antibiotic resistant organisms living in the GI microbiome. Inflammation and barrier compromise facilitate translocation of MDRO bacteria into bloodstream with clinical consequences.
- (3) Proof of concept studies suggest microbiome therapeutics can reduce the abundance of antibiotic resistant organisms and genes in the GI microbiome.
- (4) Seres is leveraging clinical & preclinical data to develop microbiome therapeutics to take-on the challenge of antibiotic resistant infection.

Thank You

Patients & Participating Clinical Sites Seres Clinical Trials

Seres R&D, Manufacturing, Clinical, & Regulatory Teams

Support from CARB-X

Collaborations with NHSc & MSKCC

Contact Information:

Matthew Henn, PhD 617-721-2360 mhenn@serestherapeutics.com

in linkedin.com/in/mhenn1