VRC/NIAID Update on a Phase I trial of a Universal Influenza Vaccine Candidate

Grace Chen, M.D., MPH
Clinical Trials Program
Vaccine Research Center
NIAID, NIH
Thank you to the Committee for the invitation to present an update from the Vaccine Research Center at NIAID/NIH on the phase I trial of a universal influenza vaccine candidate.
Outline

• Burden and Challenges of Influenza
• VRC Influenza Vaccine Development
• VRC Universal Influenza Vaccine candidate platform
• VRC Phase I Clinical Trial Updates on Universal Influenza Vaccine Candidate
To provide some context to the trial- I will talk a bit first about the VRC influenza vaccine program and then more specifically about the platform used in our phase I trials.
Influenza Genome and Proteins

- Orthomyxovirus with segmented, negative-sense, single-stranded RNA genome
- 8 gene segments encoding 11 proteins
- Sialic acid receptor-dependent tropism

Influenza Genome and Proteins

- PB1, PB2, PA (RNA polymerase)
- NA (neuraminidase)
- NEP and NS1
- M1 (matrix protein)
- HA (hemagglutinin)
- M2 (ion channel)
- NP (nucleocapsid protein)
- Lipid envelope

Segmented (-) strand RNA genome
Influenza remains a significant public health burden accounting for 3-5 million deaths and 300-500K hospitalizations due to serious illness in the worldwide.

Shown here is the influenza virion. This virus has some unique virologic characteristics including the capacity for antigenic drift and shift. Antigenic drift leads to the periodic seasonal epidemics with can lead to significant morbidity and mortality.
Historical Influenza Pandemics

Adapted from Palese, et al. Nat Med, 2004
Antigenic shifts give rise to potential for pandemics which can have even more significant impact (with estimates of mortality in 1918 pandemic ranging from 40-100 million) underscoring need for more universal influenza vaccine platform.
Current Influenza Vaccines:
- Use 1940’s technology - inactivated virus grown in chicken eggs
- Only 50-60% effective in good years
- Need to be reformulated every year to match circulating influenza strains
- Not effective against new pandemic strains and response is too late

Future Influenza Vaccines:
- Will use mammalian and insect cell manufacturing of recombinant proteins
- Apply new technologies and endpoints
Current licensed influenza vaccines have limitations— including a manufacturing process that is reliant on eggs and thus may not be agile in response to a pandemic as well as being subject to egg adapted mutations. Effectiveness of the vaccine is highly variable depending on the match between the vaccine strains and circulating strains and are only in the range of 50-60% effective in good years. Current Influenza vaccines need to be reformulated and administered with each flu season and are also not likely to be effective against new pandemic strains.

Given these limitations— there is room for improvement for influenza vaccine development and technology.
Public Health Burden of Emerging & Re-emerging Viruses

Vaccine Challenges

- Vaccines for unmet needs
- Emerging viruses
- Improving licensed vaccines

Traditional Approaches

- Licensed vaccines/antibiotics
- Passive surveillance
- Contact tracing
- Quarantine
I’ll only quickly highlight in this slide that as seen with influenza- the challenges to vaccine development have really not been well met by traditional approaches that are currently being utilized.
New Technologies Facilitate an Engineering Approach

Vaccine Challenges
- Vaccines for unmet needs
- Emerging viruses
- Improving licensed vaccines

New Technologies
- Structural biology
- Protein engineering
- Single cell sorting and analysis
- High throughput sequencing
- Rapid isolation of human mAbs
- Antibody lineage analysis
- Rapid diagnostic tools
- Systems biology

Vaccine Challenges

Vaccines for unmet needs
Emerging viruses
Improving licensed vaccines
However, the landscape is changing. New technologies available in the last 10 years provide new options for pandemic preparedness and response. This applies to therapeutics and diagnostics as well as vaccines.
Goals for a Universal Influenza Vaccine

• Consistent efficacy >75% against medically-attended illness caused by seasonal and pandemic strains of influenza
• Single product that does not require annual revision
• Durable immunity for greater than 1 year
These new capabilities have reinvigorated the efforts to develop a universal influenza vaccine which can really include a breadth of goals. The VRC’s goals (consistent with the 2018 NIAID strategic plan for development of a universal influenza vaccine) include developing a vaccine with improved and consistent efficacy >75% and a product that would not require annual revision and would ideally provide durable immunity for greater than 1 year.

Biological Challenges for a Universal Influenza Vaccine

- Antigenic variation and genetic plasticity
 - Extensive zoonotic reservoir, reassortment, adaptive mutations

- Pre-existing immunity
 - Immunodominance of serotype-specific epitopes
 - Immunodominance of antibody lineages with limited breadth
Beyond the challenges already discussed-additional challenges exist for a universal influenza vaccine including a tremendous amount of antigenic variation in flu viruses as well as the still unclearly defined impact of pre-existing immunity due to the ...
Technology Focus of VRC Influenza Vaccine Development Program

- **Design** - Structure-guided approach for antigens and probes
- **Display** – Natural and designer nanoparticles
- **Delivery** – Protein or nucleic acid
- **Detection**-- Specific immunological endpoints
In order to overcome some of these challenges, VRC is utilizing leveraging technological advances in structure-guided approach to design antigens including natural and designer nanoparticles as well as different delivery techniques to develop vaccine platforms. In addition, the VRC influenza vaccine program is also focusing on making advancements in the assessment of the immune response to vaccination.

Detection of specific immunological endpoints

- Define and target specific antibody lineages with cross-neutralizing activity
- Analysis of B cell phenotype and repertoire at single-cell level
- Development of high-throughput functional serological assays
Influenza Vaccine Clinical Development at VRC

2006
- Nov 2006: 1st Flu vx (H5N1) IND Submission
- Dec 2006: VRC 304 H5 Flu DNA Vx

2007
- July 2007: VRC 305 H5 Flu DNA vx
 (Route study)

2008
- VRC 306 H5-H5N1 prime boost

2009
- Apr 2009: VRC 308 H1N1 DNA Vx
- Mar 2009: VRC 309 Seasonal DNA-TIV or TIV-TIV regimens
- Oct 2009: VRC 310 Interval Studies of H5 DNA and H5N1

2010
- Aug 2009: VRC 308 H1N1 DNA Vx
- Mar 2010: VRC 310 Interval Studies of H5 DNA and H5N1

2012
- Jan 2012: VRC 701 Seasonal DNA -TIV
- June 2012: VRC 702 Seasonal DNA-TIV

2015
- Aug 2012: VRC 703 Prime Boost Schedules Seasonal DNA -TIV
- Jan 2015: VRC 315 H7 DNA MIV Prime-Boost

2017
- Mar 2017: IND Submission H2 HA Ferritin (VRC 316)
- Oct 2017: VRC 316 HA-F

2019
- Feb 2019: IND Submission H1ssF (VRC 321)
- Apr 2019: VRC 321 H1ssF

DNA priming and influenza vaccine immunogenicity: two phase 1 open label randomised clinical trials. Ledgerwood JE et al. (VRC 306/310)

Prime-boost interval matters: a randomized phase 1 study to identify the minimum interval necessary to observe the H5 DNA influenza vaccine priming effect. Ledgerwood JE et al. JID (VRC 310)
Influenza vaccine clinical development at the VRC has been ongoing since 2006. However, in the last few years, we have focused more on the development of a universal influenza vaccine candidate and began with a proof of concept testing in a platform that was first tested in 2017-2018 and has continued in development as the platform being used in the VRC universal vaccine candidate first in human trial—called VRC 321.
VRC Vaccine Development Pathway

- **VRC Laboratories/ NIAID**
 - Research Labs
 - Engineering Lab
 - GMP Pilot Plant
 - Vaccine Clinic

- **Candidate Vaccine**
 - Phase 1-2 Trials (humans)
 - Measure Immune Response

- **Industry Partner**
 (commercial scale)
I will just highlight here that the VRC vaccine development pathway is unique in many ways— including the ability to advance promising vaccine candidates that were developed by scientists on the NIH campus into phase I clinical testing.
VRC Universal Influenza Vaccine Development

- **HA is primary antigenic target**
- **Structure-guided antigen design**
 - Immunodominant strain-specific epitope
 - Conserved epitope
- **Nanoparticle display**
 - Mosaic RBD or full-length HA
 - HA RBD
 - HA head removal
 - HA stem trimers
- **Strategy for achieving protective antibodies against future drifted and pandemic strains**
 - Avoiding immunodominance
 - Accumulation of breadth
 - Targeting conserved sites

Kanekiyo et al. Nature 2013
Kanekiyo et al. Nature Immunology 2019
Shown here is the universal influenza vaccine candidate that we tested in VRC 321- composed of an H1 HA virus stem (which has more conserved epitopes) fused to an H. pylori ferritin platform. Prior to testing this universal influenza vaccine candidate- we had previously tested the ferritin platform with an H2 influenza HA head and I will discuss both these trials in brief detail.

Because of its highly divergent sequence from mammalian ferritins, we chose ferritin from Helicobacter pylori.
Influenza Full-Length HA Ferritin Nanoparticle Vaccines Elicit Broadly Neutralizing H1N1 Antibodies.

Masaru Kanekiyo, Gary J. Nabel, et al.

• Particles self assemble
• HA is displayed in antigenically-authentic trimeric conformation
• Immunogenic in ferrets and NHP – elicits neutralizing antibodies
We first tested the H pylori ferritin platform with an H2 influenza HA head in clinical trials following preclinical studies demonstrating safety and immunogenicity in animal models.

Utilizing an H2 influenza conferred several advantages- first, although H2 has not circulated in humans since 1968, H2 influenza still circulates in avian reservoirs and thus represents a pandemic pathogen. In addition- as you will see in the next slide of the trial design- we were able to assess the impact on naïve vs experienced individuals utilizing an H2 influenza vaccine.
Influenza HA Ferritin Phase 1 Trial

VRC 316
Phase I Influenza H2 HA Ferritin Vaccine (unadjuvanted) Alone or in a Prime-Boost Regimen with an Influenza DNA Vaccine

Subjects: Healthy adults, 18 – 70 years old

Enrollment: 50
Safe and well tolerated

<table>
<thead>
<tr>
<th>VRC 316 Schema</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part I: Dose Escalation of HA-F A/Sing</td>
</tr>
<tr>
<td>Group</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part II: Evaluation of HA-F A/Sing and DNA A/Sing in Prime-Boost Regimens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>
Here is the study design of the first clinical trial evaluating the H pylori ferritin platform- this is not the universal influenza vaccine candidate trial but rather the clinical trial that we first tested the VRC H pylori ferritin platform using an H2. Our preliminary results showed that this vaccine platform was safe and well tolerated as well as immunogenic and we therefore utilized this platform for our first universal influenza vaccine candidate.
Conserved HA Stem as a Vaccine Target

The vaccine used in the trial utilized an H1 influenza HA stem (which as you can see represented here) has more conserved immunosubdominant epitopes- fused to an H pylori ferritin.
Group 1 HA Stem Antigen Design

This is just a visual representation again of the vaccine- starting with the HA and then removing the immunodominant HA head and then linking the HA stem to ferritin thus creating the vaccine.
• H1ssF protects animals from heterologous H5N1 lethal challenge
• Headless HA-stem antigens achieve heterosubtypic protection and induce multi-donor cross-neutralizing antibody lineages
Influenza HA Stem Ferritin Phase 1 Trial

VRC 321
Phase I Influenza H1ssF (unadjuvanted)

Subjects: Healthy adults, 18 – 70 years old

Enrollment goal: 53

<table>
<thead>
<tr>
<th>Group</th>
<th>Age Cohort</th>
<th>Subjects</th>
<th>Day 0</th>
<th>Week 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18 - 40</td>
<td>5</td>
<td>20 mcg</td>
<td></td>
</tr>
<tr>
<td>2A</td>
<td>18 - 40</td>
<td>12</td>
<td>60 mcg</td>
<td>60 mcg</td>
</tr>
<tr>
<td>2B</td>
<td>41 - 49</td>
<td>12</td>
<td>60 mcg</td>
<td>60 mcg</td>
</tr>
<tr>
<td>2C</td>
<td>50 - 59</td>
<td>12</td>
<td>60 mcg</td>
<td>60 mcg</td>
</tr>
<tr>
<td>2D</td>
<td>60 - 70</td>
<td>12</td>
<td>60 mcg</td>
<td>60 mcg</td>
</tr>
<tr>
<td>Total</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
And here is the study design that was developed to assess this vaccine candidate. Our goal will be to recruit just over 50 volunteers age 18-70 and we will evaluate safety, tolerability and immunogenicity. We began vaccinations in April and hope to complete enrollment by the end of the year and have preliminary data by mid-2020.
Recent advances in vaccine technologies have allowed for new platforms for potential universal influenza vaccine candidates.

Targeting HA stem epitopes may lead to an improved breadth of immune response.

VRC has tested a ferritin based platform in iterative phase I clinical trials (including a potential universal influenza vaccine candidate).
Clinical Trials Program

Nina Berkowitz
Team Lead, Protocol Operations

Sarah Plummer
Chief, Clinical Development

Julie Ledgoerwood
Chief, CTP

Martin Gaudinski
Medical Director

Grace Chen
Deputy Chief, CTP

Ingelise Gordon
Clinical Operations Manager

Charla Andrews
Aba Eshun
Lam Le
Stephanie Taylor

Preeti Apte
Mercy Guech
Floreliz Mendoza
Cora Trelles Cartagena

Alison Beck
Cynthia Starr Hendel
Abidemi Ola
Olga Trofymenko

Eugenia Burch
Somia Hickman
Mark O'Callahan
Olga Vasilenko

Maria Burgos Florez
Renunda Hicks
Iris Pittman
Xiaolin Wang

Cristina Carter
LaSonji Holman
Ro Rothwell
Wil Whalen

Emily Coates
Kate Houser
Jamie Saunders
Alicia Widge

Pam Costner
Rebecca Lampley
Ellie Seo
Pernell Williams

Josephine Cox
Brenda Larkin
Sandra Sitar
Galina Yamshchikov

Jennifer Cunningham

Julie Ledgoerwood

Martin Gaudinski

Grace Chen

Nina Berkowitz

Sarah Plummer

Julie Ledgoerwood

Martin Gaudinski

Grace Chen
NIAID Vaccine Research Center

Viral Pathogenesis Laboratory

Tracy Ruckwardt
Kaitlyn Morabito
Kizzmekia Corbett
Lauren Chang
Emily Phung
Man Chen
Deepika Nair
Olubukola Abiona
Azad Kumar
Alex Derrien-Coleman
Anthony Dipiazza
Rebecca Loomis
Erez Bar Haim
Monique Young

Masaru Kanekiyo
Michelle Crank
Seyhan Boyoglu-Barnum
Rebecca Gillespie
Adrian Creanga
Syed Moin
Julia Lederhofer
Geoffrey Hutchinson
Brian Fisher
Cynthia Ziwawo
Osnat Rosen
Karin Bok
Saavan Chintalacheruvu
LaTanya Chapman

NIAID
Anthony Fauci
Hilary Marston
Cristina Cassetti
Theodore Pierson

Julie Ledgerwood & Clinical Trial Program
Adrian McDermott & Vaccine Immunology Program
Diane Scorpio & Animal Care Program
Jason Gall & Vaccine Production Program
David Lindsay & Vaccine Clinical Material Program
Kevin Carlton & Project Management

John Mascola
Richard Koup
Sarah Andrews
Peter Kwong
Jeffrey Boyington
Abe Mittelman

VRC
Mario Roederer
Daniel Douek
Robert Seder
Nancy Sullivan
Judy Stein/Will Adams
Marybeth Daucher