

HHS H7N9 Vaccine Response

NVAC Meeting

Robin Robinson, Ph.D.
BARDA/Director
ASPR//Deputy Assistant Secretary

June 11, 2013

Influenza Risk Assessment Tool (IRAT): H7N9: Emergence vs. Impact Risks

Vaccine Decision Framework

Current Status: Clinical Lots and Trials

- No H2H transmission
- Plateau/ low increase in human cases
- Limited geographic distribution
- Significant morbidity & mortality
- Manufacturing process TBD
- Safety and Effectiveness TBD
- Ex. H3N2

Small Stockpile

- No H2H transmission
- Current conditions or increasing incidence
- Expanding Geographic **Spread**
- Significant morbidity & mortality
- Defined/tenable manufacturing process
- Safety and Efficacy identified from CT
- Capable of EUA status
- **Emerging antiviral** resistance
- Ex. H5N1

- No/early H2H transmission
- Many case clusters, frequent health care workers infected
- **Wide Regional or Multination Spread**

Broader Stockpile

- Significant increase in genetic and phenotypic indicators of human adaptation
- Significant morbidity & mortality
- Manufacturing process established
- Safety and Effectiveness acceptable
- Vaccine approved or EUA allowed

Large Scale Vaccination Campaign

- **H2H Transmission**
- **High Population Attack Rates**
- High rates of hospitalization and CFR
- Genetic-phenotypic markers for sustained transmission
- Global spread
- Can manufacture for full population based on dosing data
- Costs are affordable
- Vaccine is safe, effective
- Vaccine is approved or EUA allowed

U.S. 2013-H7N9 Vaccine Strategy

H7N9 Vaccine Development Timelines

Pre-Pandemic H7N9 Vaccine Stockpile Factors

- Intended Use
 - Entire Population
 - Portion of Population
 - Public safety workers and/or other essential workers
 - Persons at high risk of adverse outcomes
 - Children
 - Priming vaccine immunization
- Vaccine Types
 - Live, attenuated
 - Inactivated Split Virion or Subunit
 - Egg-based
 - Cell-based
 - Recombinant
 - H5N1 stockpile (inactivated only) vs. H7N9 stockpile (pending clinical results)
 - Production capacities

Pre-Pandemic H7N9 Vaccine Stockpile Factors

Timing

- Optimization of vaccine production yields
- Uninterrupted seasonal vaccine production campaign
- Window of opportunity balanced with urgency
- Budgetary considerations
- Access to manufacturing lines and staff
- Knowledge or lack thereof of dose requirements

Cost

- Unit cost per vaccine lot in contracts
- Other factors
 - Number of vaccine lots ordered (volume discounts)
 - Production yield (Total amount of vaccine antigen per lot)
 - Dose requirement (Number of doses per vaccine lot)
- Possible opportunity and carrying costs
- Availability of funds

H7N9 Vaccine Production Campaigns: (-/+) Adjuvant

Maintain Seasonal Production - No Adjuvant

Maintain Seasonal Production - Adjuvant

H7N9 Vaccine Summary

- Risk assessment for H7N9 is similar to H5N1
 - Decision for H5N1: develop vaccine and stockpile bulk antigen
- HHS has already taken multiple steps in the vaccine development process: 1) vaccine seed strain development, 2) clinical lot manufacturing, 3) potency assay reagent preparation, and 4) clinical trial protocols in preparation
 - Clinical trials expected to start in August 2013
- Vaccine stockpiling decision under deliberation
- Decision to conduct a large scale vaccine manufacturing campaign depends on risk of emergence of sustained human-to-human transmission

Vaccine Lessons Learned

• 2009 H1N1

- Need for new vaccine technology (Cell- & recombinant- based now FDA approved and available)
- Need to shorten vax mfg. process from beginning to end.:
 - Expedited sterility/potency testing are used when possible
 - Optimization of Vaccine seeds employed

• 2013 H7N9

- Streamline vaccine seed strain qualifying process & provide guidance to manufacturers
- Better coordination of HHS & USDA on biocontainment permitting
- Recombinant-based vaccines moving faster than other technologies in development