International Prize Winners Demonstrate the Future of Open Science

Open Science Winners Infographic-01

The finalists of the first international Open Science Prize competition were announced today.  The Open Science Prize is a collaborative effort between the National Institutes of Health, UK-based Wellcome Trust, and the Howard Hughes Medical Institute designed to encourage and recognize the development of new tools, products, and services that use open digital content to help solve pressing public health and biomedical research challenges.

Six innovative proposals were selected as finalists.  Each of the finalist teams will receive $80,000 for development of a prototype by December 1, 2016.  The six proposals and their associated teams were chosen from an initial pool of 96 submissions representing 450 innovators from 45 countries across 5 continents.  Each proposal selected as a finalist represents an original approach to either synthesizing available data to create new knowledge or creating platforms that allow for the integration of such knowledge.  The six finalist proposals are described in detail on the Open Science Prize website.

The Open Science Prize finalists were announced at the 7th annual Health Datapalooza conference in Washington, DC.  The announcement was made by Phil Bourne, the Associate Director for Data Science at the National Institutes of Health and Clare Matterson, Director of Strategy at the Wellcome Trust.  A grand prize winner, to be selected from amongst the six finalists, will be announced in early 2017.  The grand prize winner will receive $230,000 to advance their winning project.

In order to qualify, each finalist team was required to be an international partnership, composed of at least two or more individuals or entities of which at least one is based in the United States and another is based in another country.  The fascinating stories of how these partnerships formed and what they have proposed provide important and inspiring examples of the power of open science.  These stories demonstrate how open science can enable interdisciplinary teams from across the globe to work together to creatively advance public health and biomedical research.

The following are brief summaries of the six proposals selected as finalists:

  • Open AQ: Real-Time Air Quality Data – This proposal was inspired by an initial open air quality project undertaken in Mongolia, which demonstrated the positive effect that air quality data can have on a community by enabling transparency and the ability to make data-driven comparisons.  Poor air quality is responsible for one out of eight deaths worldwide.  Impressed by the potential benefits of scaling the Mongolia project up to the global scale, the team proposes to devise a platform for making all of the world’s air quality data available to the global public in one open-source and open data platform.
  • Real-Time Evolutionary Tracking for Pathogen Surveillance and Epidemiological Investigation – This proposal stemmed from a conversation at a conference in California between an expert from the Max Planck Institute for Experimental Biology in Germany and an expert from the Fred Hutchinson Research Center in Seattle, Washington. The two proposed to expand their existing platform, focused on exposing flu viruses, to track other emerging diseases such as the Ebola and Zika viruses.  The project will use an online visualization platform where the outputs of statistical analyses can be used by public health officials for epidemiological insights within days of samples being taken from patients.
  • Open Neuroimaging Laboratory – This is a collaborative effort between researchers in the United States, Germany, and France and was inspired by the successful results of an online game, Eyewire, that has led to the discovery of several new neural pathways in the brain.  These researchers asked, “What if we could utilize gaming principles to engage citizens across the world to work collaboratively to help us map a still largely unchartered territory: the human brain?”  Their proposal aims to do exactly that.
  • OpenTrialsFDA – This proposal was inspired by a former FDA reviewer. Publicly available U.S. Food and Drug Administration drug approval packages often contain important information on clinical trials that are never published in academic journals. However, despite their high value, these FDA documents are notoriously difficult to access, aggregate, and search. As a consequence, they are rarely used by clinicians and researchers.  This project proposes to advance understanding of clinical trials by building a platform to make this publicly available, but difficult to find, FDA drug approval package information more readily available and combine it with knowledge being generated about clinical trials by Open Knowledge International, a UK-based organization.
  • Fruit Fly Brain Observatory – This proposal is designed to help pool data from different labs around the world and allow scientists with a variety of backgrounds, from computer science to neuroscience, to work together in advanced modeling.  Using computational disease models, researchers can make targeted modifications that are difficult to perform in vivo with current genetic techniques.  The urgency to develop such a platform comes from one of the lead investigators whose own family is affected by Alzheimer/Dementia and Parkinson’s Disease.
  • MyGene2: Accelerating Gene Discovery with Radically Open Data Sharing– This proposal was inspired by families of patients who suffer from rare disease disorders and want a tool to facilitate their ability to share health and genetic information.  The sharing of information through such an open platform could enable the rapid identification of matching cases, which could help speed up diagnosis and transform the process of gene discovery.

You can learn more about the Open Science Prize, the submitted proposals, and the innovators’ stories here.

The Open Science Prize was a first-ever international challenge effort funded jointly by the NIH and UK-based Wellcome Trust. It highlights the kinds of advancements in global public health and biomedical research that could be developed through further funding of open science.

Biomedical research is in the midst of a paradigm shift. Several factors are facilitating the global sharing of knowledge and the development of international partnerships.  These factors include: advances in information technology, reduced cost of data storage, open government policies being adopted by many countries across the globe, and public access mandates that require the sharing of funded research publications as well as the underlying data.  The existing paradigm of an investigator toiling alone is increasingly being replaced by a more collaborative approach to research that is driven by uses and re-uses of data.

The volume of digital information generated by biomedical research, often referred to as big data, is growing at a rapidly increasing pace. Researchers’ ability to derive knowledge from data is hindered by their ability to find, access, and use it. The goal of the Open Science Prize is to support the development and prototyping of services, tools, and platforms to overcome these hurdles to ensure data can be used to advance discovery and spur innovation.

Tools like the ones we are seeing through the Open Science Prize are enabling new types of research, new types of knowledge, new types of collaboration, and new ways of thinking.  They represent the tip of the iceberg in terms of what is, and what could be created, using open digital content.   We are excited about the power of open science, and look forward to tracking these teams as they build their prototypes over the next nine months.

The public will be invited to view these prototypes in early December and to cast their vote for their favorite using an online tool.  Your vote will help us to select the winning innovation for this contest!

The Open Science Prize is made possible through a collaboration between NIH and the Wellcome Trust. The Howard Hughes Medical Institute is also contributing funds to Wellcome Trust for the effort. The NIH effort is part of the Big Data to Knowledge (BD2K) Initiative, launched in December 2013 as a trans-NIH program with funding from all 27 institutes and centers as well as the NIH Common Fund.

This is a cross-post from Data Science at NIH.

Calling on Data Enthusiasts to Help Advance Cancer Research

data sharing image that asks people to contribute their cancer research ideas to the National Cancer Moonshot Initiative

Warren Kibbe, Ph.D. is the Director of the National Cancer Institute’s (NCI) Center for Biomedical Informatics and Information Technology

Health data enthusiasts of all stripes have arrived in Washington, DC, for an annual event known as Health Datapalooza. Incredibly smart participants from government, academia, companies, startups, and patient groups meet to share ideas and brainstorm about how to share and unleash health information to improve health outcomes for all.

Although the meeting is broader than any single disease, it will explore a topic that is central to NCI’s efforts against cancer: creating knowledge from data. And the institute is reaching out to the data innovation community to help us do just that.

Earlier today, I heard Vice President Joe Biden speaking at Health Datapalooza about the importance of using data to contribute to advances in health. As part of the National Cancer Moonshot Initiative that he is leading, the Vice President has called on the cancer research community to explore new approaches to cancer research, and one repeated message is that data sharing will be critical if we’re going to accelerate progress against cancer.

Cancer is fundamentally a disease of the genome. Increasing amounts of genomic information have been generated in recent years using new tools and improved instruments for analyzing DNA. We know that sharing the results from genomic studies will be essential for translating them into clinical advances for patients.

To that end, NCI supports the National Institutes of Health Genomic Data Sharing policy, which was issued to promote the broad sharing of genomic research results and to ensure oversight and protections for research involving human data. NCI has developed guidanceon the NIH data sharing policy.

In addition, NCI is establishing the Genomic Data Commons (GDC) as a platform for sharing genomic information and associated clinical data broadly with the best scientific minds. The GDC will be an interactive system to store, harmonize, and provide access to data generated by cancer researchers. The Cancer Cloud Pilots Program is another platform we are exploring to enhance access and enable analysis of cloud and genome data for cancer researchers.

From these projects and others, we also have gained insights into many of the challenges of “big data.” Among them is the need for the standardization of results from diverse sources. Another is to establish safeguards to protect patient privacy and to enable secure spaces for working with data. We are making important steps, but the journey is only beginning.

To address these and other challenges, I invite the data innovation community to share their expertise on data sharing and help us accelerate progress against cancer. NCI has provided an online platform, Cancer Research Ideas, to enable the research community and the public to submit ideas for the National Cancer Moonshot efforts.

The submissions we receive will be considered by a panel of scientific experts and patient advocates as it develops the scientific direction for the National Cancer Moonshot Initiative. We welcome your ideas and creativity as we explore new and innovative ways to improve the health of patients with cancer.